CO2 レーザによる樹脂シートの薄膜加工技術に関する研究

岐阜大学 電気電子·情報工学科

助教 亀山 展和

(2021年度 奨励研究助成(若手研究者枠) AF-2021243-C2)

キーワード: CO₂ レーザ, レーザ加工, ポリプロピレン, ポリエチレンテレフタレート

1. 研究の目的と背景

CO₂レーザは比較的安価に大出力を得られるため,様々 な材料の切断などの加工に使用されている.特に樹脂素材 は CO₂レーザの波長帯の吸収率が高く,高速な加工が可 能でランニングコストが低いため,樹脂製品の加工に CO₂ レーザが広く使用されている.

近年マイクロプラスチックやプラスチックごみが問題 となっている. そのため, プラスチック使用量の削減の一 環として, プラスチックの効率的な利用を可能にする加工 方法が求められている.

筆者らはCO₂レーザを用いて厚さ数百μm程度の樹脂シ ートを部分的に薄膜にする新たな加工方法を開発した¹⁾. 樹脂の裏面に銅板を当てた状態でレーザ加工することで 50μm程度の薄膜部を形成することができる.フェムト秒 レーザのような短パルスレーザを使用すれば精度よく同 様の加工を行えるが,加工に時間がかかる.一方,この加 工方法では高速な加工が可能,既存の装置への導入が容易, 動的な制御が不要なため,安価な樹脂素材の加工に適して いる.また,プラスチック容器を部分的に薄くすることに よるフレキシブルな構造の実現などへの応用が期待され る.この加工方法を応用していくために膜形成のメカニズ ムを明らかにすることが不可欠である.

本論文では、樹脂シートの材質、厚さとの関連性と熱的 解析から薄膜形成メカニズムの検討を行った.

2. 実験方法

図1に,実験配置図を示す.穴の開いた銅板の上に樹脂 シートを置き,銅板に空いた穴から真空ポンプを用いて負 圧にし樹脂シートと銅板を密着させ,大気雰囲気下,室温 で CO₂ レーザを照射する. CO₂ レーザはガルバノ式で 波 長 10.6 µm,出力 30 W, 焦点距離 150 mm,集光径約 300 µm, 走査速度 1~500 mm/s で走査する.

使用する樹脂シートはポリプロピレン (PP), ポリエチ

レンテレフタレート (PET), ポリスチレン (PS), ポリテ トラフルオロエチレン (PTFE) で, それぞれの各種物性 を表1に示す.

3. 実験・考察

3・1 PP, PET, PS, PTFEの薄膜加工

それぞれ厚さ 300 μm の PP, PET, PS, PTFE のシート を用いて銅板がある場合とない場合で実験を行い,各樹脂 シートの銅板による効果の検証を行った.図2にレーザ条 件 167 J/cm²での PP の薄膜加工例を示す.加工部の底の膜 厚の厚さと加工前の表面の高さでの溝幅を計測する.

図3に各樹脂シートの加工後の膜厚を示す. 銅板を使用 しない場合、レーザのフルエンスを増加させるとどの樹脂 シートも薄膜が残ることなく貫通した. 銅板を使用した場 合、PPではフルエンスが約170 J/cm²で膜厚の減少が止ま り、膜厚は約70 µm となった. PET では約130 J/cm²で 50

凶 1 天歌 能 直 凶

図2 PPの加工断面図

		秋Ⅰ 市彻阳✓		1.027日1里101工.		
	潜熱(25℃)	熱伝導率	融点	分解温度	吸収係数(10.6 µm)	溶融粘度
	[J/g·°C]	$[W/m \cdot K]^{2)}$	[°C)	[°C]	[cm ⁻¹]	[Pa·s]
PP	1.46	0.12	164	459	30	10 ³ (290 °C)
PET	1.37	0.15	250	420	110	10 ² (280 °C)
PS	1.51	0.14	-	413	93	10 ³ (270 °C)
PTFE	$1.05^{2)}$	0.25	327 ²⁾	540 ²⁾	50	10 ¹⁰ (380 °C) ²⁾

表1 各樹脂シートの各種物性

図3 銅板有り, 無しによる加工後の膜厚, (a) PP, (b) PET, (c) PS, (d) PTFE

μm 程度の薄膜が形成され, 500 J/cm²で部分的な貫通が見 られた. PP, PET どちらもフルエンスの増加に伴い, 膜 厚がやや増加する傾向が見られる. また, PS でも銅板の 効果は見られたが, 薄膜が形成されるフルエンスの領域は 狭く, 膜厚は約 100 J/cm²であった. PTFE では銅板の影響 は見られず, ほぼ同じフルエンスで貫通した.

まず,銅板による冷却効果を考える.銅の熱伝導率は約 400 W/m·K と樹脂の千倍以上であり,銅の CO₂ レーザ吸 収率は1%以下とレーザによる加熱もほぼ無いため,効果 的に樹脂を冷却していると考えられる.樹脂の熱伝導率は 表1に示すように素材により大きな差はないため,薄膜加 工が実現しなかった PTFEにも他の樹脂と同様の冷却効果 があると考えられる.また,銅板の代わりに鉄板を使用し た場合,鉄はレーザ吸収率が約 10%あるにもかかわらず銅 板を使用した時と同じ膜厚が残ることが分かっている¹⁾. 仮に,樹脂と銅板との間で熱平衡になり薄膜が形成されて いる場合,膜厚は板の温度に依存して変化するため,レー ザ吸収率の高い鉄の場合,銅板の温度が上昇し膜厚が薄く なると推察される.よって薄膜の形成には熱の影響が小さ いと考えられる.

次に,溶融粘度に注目すると,薄膜加工が実現しなかった PTFE のみ溶融粘度が桁違いに大きい.このことから薄膜の形成には溶融状態にある樹脂の流動性が影響していることが考えられる.図4にレオメータで測定した PP,

PET, **PS** の溶融粘度の温度特性を示す. **PP**, **PET** では熱 分解直前の温度で溶融粘度が 10 Pa·s 以下まで減少してお り, **PS** では 100 Pa·s 程度となっている. 以下では高い流 動性を示す **PP**, **PET** について検証を行う.

図4 PP, PET, PSの溶融粘度

3・2 樹脂シートの厚さと薄膜厚さ

樹脂シートの厚さが形成される薄膜の厚さに与える影響について検証するため、厚さ 0.24 mm, 0.50 mm の PP, 厚さ 0.20 mm, 0.54 mm の PET を使用して、3・1 と同様の 条件で実験を行った.

図 5 に PP の, 図 6 に PET の薄膜加工の膜厚と溝幅を示 す. PP, PET どちらも厚いサンプルの方で形成される膜 厚の方が厚くなり, 溝幅はサンプル厚さに依存しない結果 となっている.

3・1,3・2の実験結果より,薄膜形成メカニズムは以下のように考えられる.レーザ照射により分解温度以上に加熱された部分は蒸散し,その周辺の流動性を示す溶融部が溝の底に流れ込み膜を形成する.厚いサンプルの方が溶融部の体積が多くなり,溝幅は同程度のため,厚いサンプルの方が厚い膜が形成されると考えられる. PP でフルエンスの上昇に従い膜厚が厚くなるのは,フルエンスが大きいとレーザの走査速度が遅くなり,熱伝導により溶融部の体積が増加した結果と考えられる.

3・3 熱モデルと疑似流体モデルによる薄膜加エシミュ レーション

PP, PET に対して 2D の熱モデルによるレーザ薄膜加工 のシミュレーションと熱モデルに疑似的な流動を考慮し た疑似流体モデルによるシミュレーションを行う.厚さ 300 µm の樹脂の表面は 20 ℃の空気と接しており,裏面は 20 ℃の銅板と隙間なく密着している. x 軸は水平方向, z 軸は深さ方向,レーザ光は半径 150 µm の 2D ガウシアン ビームで y 方向に走査する.樹脂によるレーザ光の吸収は ランバート・ベールの法則に従い,樹脂を透過したレーザ

光は銅板表面で反射され、反射光も同様に吸収される.樹 脂表面でのレーザ光反射と銅板による吸収は無視する.熱 伝導は x-z 平面の樹脂内のみ考慮し、x 軸長さは半径の5 倍で左右の境界では片方は対称面、もう片方は 20℃一定 となっている.樹脂の液相は考慮せずに溶融の潜熱は、分 解温度までの総熱量が同一になるように比熱に組み込ま れている.分解温度まで加熱され分解の潜熱以上のエネル ギーを得た部分は大気に置き換えられて、レーザ光に対し て透明になる.樹脂表面と空気の熱伝達係数は5W/(m²·K), 樹脂裏面と銅板の熱伝達係数は1500 W/(m²·K)³⁾であり,分 解後に置き換えられた空気との熱伝達は考慮しない.表1 以外の物性値は PP, PET それぞれ比熱 2.77 J/(g·℃), 2.00 J/(g·°C), 密度 0.90 g/cm^{3 4)}, 1.37 g/cm^{3 4)}, 分解の潜熱 378 J/g, 184 J/g である.疑似流体モデルでは熱モデル計算後,溶 融粘度が 100 Pa·s 以下の部分を底に均すことで樹脂の流 動を模擬している.

図7に167 J/cm²でのPP, PET の熱モデルによるシミュ レーション結果を示す. どちらもほぼ膜が残らない結果と なっている.図8にフルエンスと膜厚の関係を示す. 熱モ デルでは PP, PET ともにフルエンスの増加に伴い膜厚が 急速に減少しほとんど残らないが,疑似流体モデルでは PP, PET ともに貫通することなく膜が形成され,定性的

ではあるが実験結果の膜厚の傾向を再現できている.シミ ュレーションの結果からも薄膜形成のメカニズムとして 熱的影響より樹脂の流動性が主な要因であることが示唆 される.

4. 結論

本研究では CO₂ レーザによる樹脂シートの薄膜加工の メカニズムについて熱的影響と流体的影響から検証を行 った.

実験結果とシミュレーション結果より薄膜形成におい て熱的影響は小さく,流体的影響が支配的であることが分 かった.薄膜形成のメカニズムとして、レーザ照射により 分解せず加熱のみされて溶融し流動性を示す部分が加工 部の溝の底に流れ込むことで薄膜が形成されていること を明らかにした.

以上の本研究の成果は国際論文誌「Polymers」に「The effect on thin-film formation of the polymer sheets by the CO₂

laser with the copper base」というタイトルで掲載された.

謝 辞

本研究の遂行にあたりご支援いただきました公益財団 法人天田財団に厚くお礼申し上げます.

参考文献

- N. Kameyama, H. Yoshida, H. Fukagawa, K. Yamada, M. Fukuda: Polymers 13 (2021) 1448.
- 2) H.F. Mark: Encyclopedia of Polymer Science and Engineering, 2nd ed.; Wiley: New York, NY, USA, 1985.
- A. Bendada, A. Derdouri, M. Lamontagne, Y. Simard: Appl. Therm. Eng. 24 (2004) 2029.
- J.I. Kroschwitz: Concise Encyclopedia of Polymer Science and Engineering; John Wiley & Sons: New York, NY, USA 1990.

図 7 167 J/cm² での熱モデルによる計算結果. (a) PP, (b) PET. *t* = 0 の時, レーザの中心は x-z 面から 750 µm 離れている.

