レーザ加工による溶射前処理手法の検討

広島県立総合技術研究所 東部工業技術センター 加工技術研究部 主任研究員 大田 耕平 (2020 年度 奨励研究助成(若手研究者枠) AF-2020240-C2)

キーワード:レーザ,溶射,前処理

1. 研究の目的と背景

溶射とは、材料を溶融あるいは半溶融にした状態で、基 材に吹き付けて皮膜を形成する表面処理技術の一種であ る. 基材と異なる材料の皮膜により、防錆、防食、耐摩耗 性、導電性付与など、様々な特性を基材に付与することが 可能である¹⁾. また、環境負荷低減の観点からも、必要な 部位のみに必要な特性を付与できる技術として注目され ている.

溶射前処理として施工されるショットブラスト処理は, 基材表面を清浄化,粗面化し,溶射皮膜の密着性を向上さ せる重要な工程である²⁾.しかし,施工時に騒音や粉塵が 発生することや,硬く脆いセラミックスなどの脆性材料や 金属薄板などの変形しやすい基材などには適さないこと, 狭所などブラストが届きにくい部分の処理が難しいこと 等,課題も多い.

本研究ではブラスト処理に代わる溶射前処理方法とし てレーザ加工に着目した.レーザを用いることで上述した 課題を解決出来るほか,加工再現性の高さから,安定した 溶射皮膜を施工できるなど多くの利点がある.今回は溶射 前処理にレーザとブラストをそれぞれ用いて前処理加工 した基材に対して溶射を行い,皮膜密着力と皮膜断面の比 較を行った.

また、レーザ加工面の表面性状パラメータを測定し、どのパラメータが密着力と相関が高いのか調査した.

2. 実験方法

2・1 溶射前処理加工方法

レーザを用いた溶射前処理加工にはパルスファイバー レーザ(YDFLP-C-30-M7-S:JPT 社製)を用いた.表1 にレーザの諸元を示す.レーザにはガルバノユニットが付 属し,最大 3000mm/s の速度でレーザを走査することが できる.基材にはアルミニウム合金(JIS 規格 A5052)を 用い,サイズは 100mm×50mm×5mm とした.レーザ処 理面はレーザ走査速度 50mm/s,出力 27W,繰返し周波 数 10kHz, パルス幅 200nsの照射条件で,加工痕が直線 状に 100 μ m のピッチ間隔で並ぶ状態に加工した.

ー方, ブラストを用いた前処理加工には処理はブラスト 材にホワイトアルミナ(粒度#240)を用いて, エアー圧 4.0Mpa, ブラスト距離 15mm でブラストを行った.

レーザ処理面とブラスト処理面の一部をレーザ顕微鏡 (LEXT OLS4100: Olympus 製) で撮影した 3D 写真を 図 1 に示す. レーザ処理面は照射痕が直線状に加工されて おり, ブラスト処理面は完全にランダムな形状となってい るのが確認できる. 表 2 に主要な表面性状パラメータを示 す. 本研究では, 面の表面性状パラメータに注目している が, この理由として密着力などの皮膜特性は評価面の三次 元的特徴の影響を受けるためである. Sa, Sz はともに面 粗さを表す主要なパラメータであるが, どちらもレーザ処 理面のほうが僅かに大きい値となっている.

表1 レーザ諸元

項目	仕様
波長	1064nm
出力	>30W
パルス周波数	1kHz-4000kHz
パルス幅	2ns-350ns, 15 ステップ
ビーム品質	TEM00

レーザ処理面 ブラスト処理面 図1 溶射前処理加工面のレーザ顕微鏡写真

表2 表面性状パラメータ

表面性状パラメータ	レーザ, μm	ブラスト,μm				
Sa	14.4	8.2				
Sz	119.4	112.1				

2・2 溶射皮膜の成膜

表面処理を行った後,フレーム溶射装置(MK74: Metallisation 製)を用いて,ホワイトアルミナ(Al₂O₃) の成膜を行った.溶射ガンの走査速度10mm/s,溶射ガン と基材との距離60mmとし,溶射材はWA微粉(粒度# 1500)を用いた.

2・3 密着力評価試験

溶射皮膜の密着力を評価するため,引張試験を行った. 試験サンプルに直径 20mm の円柱治具を 2 液混合のエポ キシ接着剤で接着し,万能試験機を用いて皮膜を引きはが す方向に荷重をかけ,皮膜が破断した際の強度から密着力 を求めた.引張速度は 5mm/min で行った.

3. 結果と考察

3・1 引張試験結果

図 2 に引張試験によって得られた密着力と皮膜膜厚の 関係を表すグラフを示す. グラフ中のプロットは試験結果 を,破線はプロットを線形近似したものである. 全体的な 傾向として,膜厚が厚くなると皮膜密着力は低下する傾向 があるが,これは前処理の影響ではなく,厚膜化による内 部応力の影響によるものと考えている.内部応力の影響に ついて,溶射施工時には,溶射粒子の熱が基材に移るため, 圧膜化によって基材の温度が高くなる.今回基材として用 いたアルミニウム合金の線膨張係数は大きいため,冷却に 伴う熱収縮量も大きいことから,溶射施工後のアルミニウ ム合金冷却時に凝固した皮膜と基材の界面に熱応力が生 じ,密着力が低くなると考えている.また,レーザ処理に 比べてブラスト処理は近似線からのプロットのばらつき が大きくなっており,これはブラスト処理面の再現性が低 いためと考えている.

これらの点を踏まえてレーザ処理とブラスト処理での 溶射皮膜密着力を比較すると、全体的にブラストの方が高 くなることがわかった.この結果から、表2に示す表面粗 さの値と密着力は単純な相関関係にはないことがわかっ た.また、膜厚200µm前後の領域ではどちらの前処理方 法でもJIS 規定値である 8.5MPs 以上の密着力となるこ とが確認できた.

3・2 引張試験後の破断面

図 3 に引張試験後の基材の破断面写真を密着力ごとに 整理したものを示す.写真右下の数字は膜厚(µm)を表 す.レーザ処理したサンプルでは,密着力が15MPa以上 とそれ以下で破断面に違いがみられた.15MPa以上では 破面全体に白色~灰色に変色しており,これは表面処理を 行った基材側に溶射膜の一部が残留しているためとみら れる.このことから引張時の破断は溶射皮膜内部で起こっ たと考えられる.15MPa以下では破面の変色はなく,引 張時の破断は主に表面処理面と溶射皮膜の界面で起こっ たと考えられる.一方で,ブラスト処理したサンプルにお いてもレーザ処理と同様に,高密着力で溶射皮膜が基材に 残留する量が多く,破断は溶射皮膜内部で起こっている傾 向がみられ,低密着力で破断は界面で起こっている傾向が みられた.

図3 引張試験後の破断面写真

3·3 断面観察

図4にSEM-EDXによる溶射皮膜の断面観察写真と 元素ごとのマップ分析結果を示す.アルミと酸素からなる 溶射材が表面処理面に堆積し,表面処理した凹凸部分に食 い込んでいるのが確認できる.また,炭素のマップで溶射 皮膜と表面処理面の界面を見ると,レーザのマップでは炭 素が界面に沿って存在していることが確認できる.これは 界面付近の溶射皮膜に空孔が存在しており,その空孔に埋 込樹脂が充填されたものと思われる.空孔が多く発生した ことの原因としては,レーザが照射された凹部では基材表 面の酸化物除去による清浄化や粗面化ができるが,レーザ が照射されていない平坦部では清浄化や粗面化に至って いないため、皮膜密着力が低く空孔が生じやすいものと考 えられる.この界面付近の溶射皮膜における空孔率の差が、 レーザとブラストの皮膜密着力の差に繋がるものと考え ている.

アルミ_レーザ

アルミ_ブラスト

炭素_レーザ

酸素_レーザ酸素_ブラスト図 4 SEM-EDX 観察結果

3・4 表面性状パラメータの影響

レーザ加工を用いた前処理面で、凸部や凹部などのうち、 どの箇所が皮膜密着力に影響するのかを調査するため、図 5 に示す 5 種類の表面処理形状について表面性状パラメ ータを取得した.①,②,③はレーザ走査速度、出力を主 に変化させて、加工深さを変化させたもので、④,⑤はレ ーザを格子状に走査したものである.なお、ショットブラ

ストによる表面処理については、処理面の再現性が低く、 皮膜密着力もばらつきが大きくなるため,評価対象から外 した.表3に取得した表面性状パラメータの値を示す.粗 さ記号は, ISO25178 に準拠している. その後, 表面処理 した基材に対して、ホワイトアルミナを成膜し密着力を測 定した.その上で得られた密着力と膜厚の関係を線形近似 し, 近似線から膜厚 200 µm 時の密着力を推定し, 表面性 状パラメータとの相関を求めた.表4に密着力との相関が 決定係数 0.75 以上となった表面性状パラメータを示す. Sa 以外は負荷曲線(累積ヒストグラム)の特徴を数値化 したパラメータであり、負荷面積率が10%と80%の位置 を境界として谷部,コア部,山部に分けて表される.今回 の結果から,突出山部の高さやコア部体積率の高さが密着 力と高い相関があることがわかった.本研究における条件 では,基材と皮膜の界面において面方向の空隙を防止する とともに,空隙から生じる亀裂進展を阻害することで密着 力向上につながると考える.山部形状により亀裂の進展が 阻害できることから、密着力との相関が高いと考えている. なお、ブラスト処理では粒子を基材に打ち付けるため、凸 形状の先端はつぶされる.一方,レーザ加工ではレーザ走 査により照射位置を制御するため,山部形状の形成に適し ている. 今後は高密着力化のための山部形状最適化が課題 と考えている.

表面処理②

表面処理①

表面処理③

表面処理④

表面処理⑤

図5 5種の表面処理面形状

				•	. /	_	
	Sz	Sp	Sv	Sa	Sq	Ssk	Sku
1	111.9	75.2	36.7	12.6	14.3	0.2	1.8
2	34.0	20.4	13.6	1.0	1.6	1.2	10.0
3	45.8	24.6	21.2	3.8	4.6	0.5	3.0
4	132.0	85.1	46.9	6.6	8.6	-0.4	4.9
5	84.1	55.0	29.0	4.4	5.9	0.5	5.6
	Sk	Spk	Svk	Smr1	Smr2		
(1)	33.4	13.5	4.0	25.9	97.6		
2	2.4	3.0	1.6	15.2	83.3		
3	12.0	5.5	3.0	13.5	96.6		
4	18.9	7.7	12.1	8.9	85.5		
5	12.9	8.7	6.7	11.3	89.6		
	Vvv	Vvc	Vmp	Vmc			
(]	0.7	19.5	0.4	14.9			
2	0.2	1.7	0.2	1.1			
3	0.3	6.3	0.3	4.3			
4	1.3	8.9	0.4	7.3			
5	0.7	6.5	0.4	4.6			

表3 表面性状パラメーター覧

表4 密着力と相関の高い表面性状パラメータ

表词	決定係数	
Spk	突出山部高さ	0.86
Vvc	コア部空間体積	0.85
Vmc	コア部実態体積	0.80
Sa	算術平均高さ	0.80
Sk	コア部のレベル差	0.77

4. まとめ

本研究では、溶射の前処理方法として、レーザとブラス トで行った場合について比較した.いずれの前処理におい てもJIS 規定値以上の密着力を得ることができた.なお、 ブラスト処理の方が全体的に皮膜密着力が高くなる傾向 がみられた.また、引張試験時の破断面をみると、高密着 力のサンプルでは皮膜内部で破断し、低密着力では皮膜と 基材の界面で破断したとみられ、破断の形態が異なること がわかった.皮膜の断面観察では、皮膜と基材の界面付近 で、レーザ処理の方が空孔率が高くなることがみられた. また、5種類の前処理形状で、どの表面性状パラメータが 密着力と相関が高いのかを調査した結果、突出山部の高さ やコア部体積率の高さが密着力と高い相関があることが わかった.今後は高密着力化のための山部形状最適化が課 題と考えている.

謝 辞

本研究は公益財団法人天田財団からの 2020 年度奨励研 究助成(若手研究者枠)(AF-2020240-C2)により実施した ものであり、ここに感謝の意を表します.

参考文献

1)馬込正勝:溶射技術マニュアル, p. 18, (1998)
2)溶射ハンドブック: p. 249, (1998), 日本溶射協会編