レーザー加工によるテラヘルツ帯 フォトニックジェットレンズの作製

神戸大学 大学院理学研究科准教授 大道 英二(2020 年度 一般研究開発助成 AF-2020208-B2)

キーワード: テラヘルツ波, フォトニックジェットレンズ, 炭酸ガスレーザー

1. 研究の目的と背景

テラヘルツ波¹⁾とは、一般に周波数が 0.1 THz から 10 THz の電磁波のことを指す(図 1)。光波と電波の中間に あたる周波数領域であり、応用に向けた様々な研究がなさ れている。例えば、その高い物質透過性を活かしたセキュ リティ検査や物質固有の吸収スペクトルを利用した爆発 物検出などが挙げられる。また、第6世代移動通信システ ム(いわゆる 6G)では、テラヘルツ帯の電磁波をキャリ アーとして使用することから、現在、テラヘルツ波には多 くの注目が集まっている。

テラヘルツ帯は光波や電波の領域とは異なり、安価で手 軽な高出力光源や高感度検出器が存在しないことが大き な課題となっている。そのため、微弱なテラヘルツ波を効 率よく集光するアンテナ技術が実用化には必要不可欠で ある。また、波長が長い(0.1 THz で 3 mm)ため通常のレ ンズによる集光では回折限界のために高い空間分解能を 得ることが難しい。以上のような理由から、テラヘルツ帯 では高い電磁波強度を実現し、また、回折限界を超えて集 光できる技術が必要不可欠である。

本研究では、テラヘルツ帯において回折限界を超えた集 光性能を実現可能な方法としてフォトニックジェットレ ンズ(図2)と呼ばれる素子に着目する²⁾。フォトニック ジェットレンズとは、波長程度の大きさの誘電体に対し電 磁波を照射すると誘電体背後にフォトニックジェットと 呼ばれる強い電磁波領域が現れる現象を用いたレンズの ことを指す。過去の報告例では、λ/3~λ/5 程度の領域に 20-30 倍程度増強された電磁波を集光できることが報告 されている³⁾。実際のこのような特性が実現できれば、筆 者らが独自に開発した力検出型テラヘルツ ESR 測定法⁴⁻⁰ の測定感度を現在の値から1 桁以上の向上することが可 能になる。また、理論的に回折限界を超えた集光性能が期 待できることから、イメージング用の集光素子としても有 用である。本研究ではこのフォトニックジェットレンズに 着目し、テラヘルツ帯で動作するフォトニックジェットレ ンズを実際に作製するとともに、その有用性を実証するこ とを目的として研究を行った。

2. 電磁波シミュレーション

2・1 フォトニックジェットレンズの設計

まず、テラヘルツ帯で動作するフォトニックジェットレ

図1:テラヘルツ波の周波数範囲。定義にもよるが、電波 と光波の中間領域にあたる0.1~10 THzの周波数領域を指 す。

図2:フォトニックジェットレンズの概念図。誘電率の 低い誘電体に対して平面電磁波が入射すると、反対側近 傍の狭い領域に電磁波強度が増大する領域が現れる。

ンズの素材となる誘電体について検討した。テラヘルツ波 をよく透過することに加え、レーザーで加工が可能な素材 を選ぶ必要がある⁷⁾。また、フォトニックジェットが誘電 体の外側に発生するためには屈折率nが2よりも小さい素 材が適当である2)。そのため、テラヘルツ波の吸収は小さ いが屈折率が大きなシリコンは不向きである。セラミック ス材料は一般にテラヘルツ波をよく透過するがレーザー による加工が容易ではない。また、一般的なガラスはテラ ヘルツ波を吸収するため、レンズとしての用途には適して いない。以上のような要素を考慮に入れて、本研究では石 英 (n~1.4-1.5)、テフロン (n~1.3)、ポリプロピレン (n~1.5) に着目した。石英は可視光に対し透明であり、また、熱に も強いことからレーザーによる高精度な加工が可能であ る。テフロンやポリプロピレンは可視光領域では不透明で あるが、テラヘルツ波の吸収が小さく、また、加工しやす いという利点がある。

本研究ではフォトニックジェットレンズの設計にあた り、CST Microwave Studio と呼ばれる電磁波解析ソフトを 用いた⁸⁾。様々な形状のフォトニックジェットレンズに対 して平面電磁波を入射し、電磁波強度の空間的分布を数値 計算から求めた。

図 3 には最も単純な球形のレンズに対する数値計算の 結果を示す。球の直径は15.9 mm、周波数は f=150 GHz、 球の屈折率は n=1.49 となっている。この図より、平面波 で入射した電磁波は球の内部を伝播したのち、入射位置の 裏側で振幅が大きく増大していることがわかる。しかも、 電磁波強度の増強している領域が非常に狭く、球の後ろ側 の伸びるような形をしていることがわかる。このようなジ ェット状に伸びた増強領域を示すのがフォトニックジェ ットレンズの特徴である。

2・2 様々な形状のフォトニックジェットレンズ

異なる形状のフォトニックジェットレンズについても 電磁波シミュレーションを行い、そのアンテナ特性を評価 した。図4は立方体形状の誘電体に対して f=115 GHz と f=150 GHz の平面電磁波を入射した場合の結果について 示す。いずれの場合においても電磁波が入射した位置の裏 側に電磁波強度の増大が見られた。特に f=115 GHz の方が f=150 GHz の場合に比べて強い強度が得られた。また、直 方体(一辺 9.5 mm)以外にも、円柱(直径 9.5 mm、長さ 9.5 mm)、球の一部を平面で切り落とした形状(直径 9.5 mm)、球の頂点に円錐状のくぼみをつけた形状(直径 9.5 mm)などについて電磁波シミュレーションを行った。測 定周波数 (f=150 GHz) と球の屈折率 (n=1.49) は固定し た。図5に示すように、円柱や直方体でも、同様に電磁波 強度の増大が見られた。また、球の一部を切り落とした形 状や一部にくぼみをつけた形状を球と比較すると、完全な 球状のものが最も大きな強度を示すことが分かった。

3. レーザー加工装置ならびに評価装置の作製

3・1 レーザー加工装置の作製

本研究では 0.1~0.5 THz の周波数をターゲットとして いるため、相当する電磁波の波長は 0.6~5 mm となる。そ のため、加工対象となる誘電体の大きさも概ね同様の大き さになる。素材によっては刃物を用いた加工も可能ではあ るが、特に石英の場合、切削が困難である。そこで本研究 では炭酸ガスレーザーを用いたレーザー加工装置を自作 した。石英はガラスと違って熱に強いため、炭酸ガスレー ザーを用いたレーザー加工に適している。

フォトニックジェットレンズでは多くの場合、軸対称の 形状を取ることが多いため、本研究では加工対象をモータ ーで回転させながら、集光したレーザー光を加工対象に照 射し、加工、切断する方式を採用した。加工対象の回転に は回転スピードを連続的に変更できる AC モーターを採 用した。また、モーター全体を XYZ ステージに搭載し、 精密な位置調整が行えるようにした。

炭酸ガスレーザーとして出力が 30 W クラスの製品

図 3:球形フォトニックジェットレンズのシミュレーション結果。球の直径は 15.9 mm、周波数 150 GHz。

図 4:1 辺の長さが 10 mm の立方体形状フォトニックジェ ットレンズのシミュレーション結果。電磁波の周波数は f=115 GHz(上)と150 GHz(下)。

図 5:様々な形状の誘電体に対するフォトニックジェット 効果:(a)円柱、(b)直方体、(c)球、(d)一部を切り落とした 球、(e)一部にくぼみをつけた球。

(Firestar V30)をSynrad 社から購入した。発振出力は、 レーザー本体に送るパルス波のデューティー比を変える ことによってほぼ連続的に調節することができる。加工対 象に対するレーザーの照射位置を調整するため、本研究で は Raylase 社のガルバノミラー (Miniscan II-7)を用いた。 ガルバノミラーは 2 枚の直交したミラーから構成されて おり、2 枚のミラーを独立に動かすことでレーザーの照射 位置を 2 次元的にスキャンすることができる。ガルバノミ ラーには非常に高い位置精度、高速動作といった長所があ る。本研究で用いたモデルの場合、繰り返し角度精度は 2 µrad となっている。ガルバノミラーではミラーの変位と 照射位置が比例するように *f*-0レンズと呼ばれる特殊なレ ンズを用いる必要がある。本研究では炭酸ガスレーザー

(波長 10 µm) に対応した ZnSe 製の f-0レンズを用いた。 付属のソフトウェアで希望するバターンを描画したのち、 ガルバノミラーに画像データを XY2-100 プロトコルで送 信することにより所望の加工が行える。あらかじめ、ZnSe レンズの焦点高さを測定しておき、加工対象が焦点に来る ように位置調整してから加工する。炭酸ガスレーザーは非 可視光であり、レーザー光を照射しながらの位置合わせは 危険である。そのため、本研究では炭酸ガスレーザー同じ 光軸で射出される赤色のガイドレーザーを用いた。このレ ーザーを用いると炭酸ガスレーザーをオフにした状態で あらかじめ位置合わせが可能になるため、安全に作業が行 える。

加工速度は、モーターの回転速度、炭酸ガスレーザーの 出力、ガルバノミラーのスキャン速度など複数のパラメー タによって変わってくる。本研究では加工対象に応じてそ れぞれに最適な加工条件を設定した。特に加工速度はガル バノミラーのスキャン速度に大きく依存することが分か った。本研究では、スキャン速度としては概ね 10 mm/s 程度の値を用いた。実際に作製したレーザー加工装置を図 6に示す。

3・2 フォトニックジェットレンズの評価装置

フォトニックジェットレンズによって実際にレンズ近 傍で電磁波強度が増大したかどうかを評価するため、本研 究では電子スピン共鳴(ESR)という手法を用いて評価し た。ESR 測定では、磁場中に置かれた電子スピンのエネル ギー分裂(ゼーマン分裂)に等しいエネルギーを持った電 磁波をスピン系に照射すると、電子スピンが電磁波を共鳴 吸収する。一般に ESR 測定の吸収強度は試料に照射され ている電磁波の強度に比例することから、フォトニックジ ェットレンズを用いることで ESR 測定の信号強度が増強 されれば電磁波強度が増大していることを意味している。

本研究では図7に示すようなESR測定系を構築した⁹。 光源として、フォトミキシング効果による連続波長可変テ ラヘルツ光源(エミッター)を用いた。この光源では、波 長が近い 2 色のレーザー光を光伝導アンテナに照射する ことで、その差周波数にあたるテラヘルツ帯の連続テラヘ ルツ波を発生させることができる。発生できるテラヘルツ 波は連続的に周波数を 0.05-1.1 THz の範囲で変えること ができる。出力は周波数にも依存するが、概ね 0.1 THz 付 近で数十µW、1 THz 付近では 1 µW 程度である。検出器に も同様のフォトミキシング効果を利用したフォトミキサ ー(レシーバー)を用いており、ホモダイン検波による高

図6:本研究で作製したレーザー加工装置。

図 7:フォトニックジェットレンズの評価に用いた ESR 測定系(上)。下図は誘電体と試料の位置関係を示した試 料近傍の拡大図。

感度なテラヘルツ波検出が可能である。

エミッターから射出されたテラヘルツ波は樹脂製のテ ラヘルツレンズを用いて試料位置に集光される。フォトニ ックジェットレンズを用いた測定では測定試料とフォト ニックジェットレンズを密着させる形で貼り付けた。測定 系全体を無冷媒型 10 T 超伝導磁石の室温ボア内に挿入し、 試料位置が磁場中心に来るようにセットした。周波数一定 の条件下で磁場を掃引することにより ESR 測定を行った。 測定試料には、ESR 測定の標準試料である DPPH 粉末を 用いた。

4. 実験結果

4・1 球形フォトニックジェットレンズ

前節で説明した ESR 測定法を用いて、球形の誘電体に よるフォトニックジェット効果を調べた結果を図 8 に示 す。この測定では誘電体としてポリプロピレン (PP) 球 (直径 15.9 mm)を用いた。測定は室温下、*f*=250 GHz の 測定周波数で行った。

上側のデータは誘電体球を置かずに試料だけを焦点に 置いた場合の測定結果である。約8.89 T付近に見える下 向きの変化が ESR 吸収に由来する信号である。一方、PP 球を試料の前に置いた場合、ESR 信号の大きさは PP 球が 無い場合に比べて約3倍増大していることがわかる。この ことから試料の前に誘電体球を置くことで試料位置にお ける電磁場強度が増大し、ESR 信号が増大したと考えるこ とができる。

4・2 レーザー加工フォトニックジェットレンズ

作製したレーザー加工装置を用いて実際にフォトニッ クジェットレンズの試作を行った。図9に示すのは、直径 9.5 mmのテフロン球に対して加工を行ったものである。 シミュレーション結果に合わせて、球を平面で切り落とし たもの(左)、頂点にくぼみをつけたもの(中央)ならび に楕円状に切り落としたもの(右)などを作製した。テフ ロンについては加工性が良く、比較的望んだ形状の加工が 行えることが分かった。ポリプロピレンといったその他の 樹脂材料では、炭酸ガスレーザーの照射によって融解する などしてしまい加工には適さなかった。テフロンはテラへ ルツ帯における吸収係数が小さいことからフォトニック ジェットレンズ材料としては今後、有望である。

また、本研究では石英についても加工を行った。ガラス の場合と異なり、レーザー光を照射しても割れたりするこ となく十分な精度で加工できることが分かった。また、樹 脂材料に比べると加工には時間がかかるものの加工後の 表面は十分に滑らかであり、光学素子として使用可能であ ることがわかった。石英は光学的にも透明であることから 目視による位置合わせが可能あり、テフロンに比べると使 いやすい。今後は、加工条件の最適化を行い、石英ロッド を用いてフォトニックジェットレンズの作製に着手して いく予定である。

5. まとめ

本研究では、将来的に応用が期待されるテラヘルツ波の 強度を増強するため、誘電体を用いたフォトニックジェッ トレンズに着目した。これまでの報告では、球などの単純 な形状が多くみられるが、本研究では良りよい性能を実現 するためにフォトニックジェットレンズの形状最適化を 目指した。そのため、切削が困難な素材に対しては精密な 部品加工を実現するため、炭酸ガスレーザーを用いた加工 機を自作した。また、電磁波解析シミュレーションソフト を用いて集光特性についても数値的に評価した。

実際にフォトニックジェットレンズを用いて ESR 吸収 測定を行ったところ、3倍程度の信号増強が見られたこと からテラヘルツ領域でもフォトニックジェットレンズが 機能していることが分かった。今後は、引き続き石英や樹 脂材料を用いてフォトニックジェットレンズの作製を行 い、より最適なレンズ形状の決定ならびに実際のテラヘル ツ波を用いた測定への応用を進めていきたいと考えてい る。

図 8: 球形の誘電体を用いた ESR 測定の結果。上のカー ブは誘電体を用いていない場合の測定結果(測定周波数 f=251.974 GHz)、下のカーブは直径が 15.9 mm のポリプロ ピレン球を用いた場合の結果(測定周波数 f=250.821 GHz) である。下向きの変化が ESR 吸収に起因する信号 である。

図 9:炭酸ガスレーザーを用いて作製したテフロン製フォ トニックジェットレンズ。球の半径は 9.5 mm。

謝 辞

本研究を遂行するにあたり、一緒に計算ならびに実験 を行ってくれた滝川稜人君をはじめとする大学院生諸氏 に感謝します。

参考文献

- 1) Yun-Shik Lee, "Principle of Terahertz Science and Technology", Springer (2009).
- 2) S. Lecler, S. Perrin, A. Leong-Hoi and P. Montgomery, "Photonic jet lens", *Scientific Reports*, **9** (2019) 4725.

- H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, "Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet", *Nano Lett.* 16 (2016) 4862.
- 4) H. Takahashi, T. Okamoto, K. Ishimura, S. Hara, E. Ohmichi, and H. Ohta, "Force-detected high-frequency electron spin resonance spectroscopy using magnet-mounted nanomembrane: robust detection of thermal magnetization modulation", *Review of Scientific Instruments* 89 (2018) 083905/1-8.
- 5) T. Okamoto, H. Takahashi, E. Ohmichi, H. Ishikawa, Y. Mizutani, and H. Ohta, "Force-detection of high-frequency electron paramagnetic resonance spectroscopy of microliter solution sample", *Applied Physics Letters* **113** (2018) 223702/1-4.
- 6) H. Takahashi, T. Sakurai, E. Ohmichi, and H. Ohta, "Field-angle-dependent multi-frequency electron spin resonance spectroscopy in submillimeter wave range based on thermal detection", *Review of Scientific Instruments* 92 (2021) 083901/1-6.
- 7) E. Bründermann, H.-W. Hübers, M. F. Kimmitt, "Terahertz Techniques", Springer (2012).
- https://www.3ds.com/products-services/simulia/products/ cst- studio-suite
- 9) E. Ohmichi, T. Fujimoto, K. Minato, and H. Ohta, "Terahertz electron paramagnetic resonance spectroscopy using continuous-wave frequency-tunable photomixers based on photoconductive antennae", *Applied Physics Letters* **116** (2020) 051101/1-5.