積層金属—セラミックス複合テープにおける 高精度導電性マイクロパス加工技術の構築

名古屋大学 大学院 工学研究科 電気工学専攻 教授 吉田 隆 (2020 年度 一般研究開発助成 AF-2020203-B2)

キーワード:高温超伝導材料,レーザ加工,マイクロパス

1. 研究の目的と背景

高温超伝導材料は高い臨界温度や臨界磁場を有してお り、液体水素温度(20K)、高磁場下での高い臨界電流など も報告され、超伝導電力貯蔵装置(SMES)¹⁾、Magnetic Resonance Imaging (MRI)²⁾及び Nuclear Magnetic Resonance (NMR)³⁾などの超伝導応用への展開が期待されている。特 に核融合マグネットでは、20-30 K で大電流かつ高磁場の 動作が可能である REBa₂Cu₃O_v (REBC0) の運用が期待されて いる4)。そのため、核融合装置用に大電流を流すことがで きる REBCO 積層型導体の研究開発が進んでいる。例えば、 核融合研によって提案されている FAIR 導体は、高純度ア ルミシートを緩衝材として挟んだ REBCO のテープを積層 したものを、アルミ合金製ジャケットの溝に入れ、摩擦攪 拌接合で蓋をした導体であり、大型ヘリカル装置(LHD) への適用が期待されている 5-6)。また、高磁場下で高特性 が報告されている REBCO 高温超伝導線材は、超伝導結晶構 造に起因する異方性などのため、薄いテープ形状(積層金 属-セラミックス複合テープ)の素線で開発が進んできた ⁷⁾。そのため、撚線などによる大電流導体の作製が困難で、 それを用いた大型コイル応用への大きな課題となってい た。さらに、REBCO線材を用いた高磁場マグネットにおい て、線材の局所的な特性劣化の発生により、いくつかの事 故例が報告され、実用化・応用への障害となっている。

この REBCO 積層導体では、高い工学電流密度 *L*の下で のクエンチ保護が課題とされている⁸⁻⁹⁾。*L*を高めるため には、導体の大部分を占める銅安定化層を減らす必要があ る。しかし、REBCO テープの銅安定化層を減らすと、導体 内の REBCO 線材間転流が困難となり、導体の熱安定性が低 下する。

本研究では、大電流導体を構築することに適した新しい 構造の REBCO 線材を研究開発する。具体的には、複数の積 層金属一セラミックスで構成される REBCO 線材を積層す る際、従来の REBCO 線材は REBCO 層とハステロイ等の基材 の間に絶縁物の中間層があるため、単純な積層だけでは REBCO 線間で電流が転流できず、導体としての安定性を高 くすることができない。本研究では、中間層にレーザ加工 技術を用いて新たに高精度は導電性マイクロパスを設け、 さらにその技術の応用展開をはかることを目的とする。そ こで、REBCO 線材間の電流を分配し、導体の安定性を向上 させるために、導電性マイクロパスを提案する。図1は、

図 1 導電性マイクロパスを有する REBa₂Cu₃O_y線材 の模式図及び局所的な欠陥 (ブリッジ部)を意図的に 加工した際の導電性マイクロパスがある場合とない 場合の REBC0 テープ間の電流概念図

導電性マイクロパスを有する REBCO テープの模式図を示 す。この場合、導電性マイクロパスは、金属基板とAg 層 の間の電流経路であり、電流は REBCO テープのバッファ層 を通過して流れると期待される。図 1 は、局所的な欠陥 (ブリッジ部)を意図的に加工した際の導電性マイクロパ スがある場合とない場合の REBCO テープ間の電流概念図 を示す。導電性マイクロパスを持たない従来の積層導体で は、中間層がテープ間を絶縁するため、REBCO線材間で転 流が発生しないことが考えられる。一方、導電性マイクロ パスを導入することで、導電性マイクロパスを介して REBCO線材間での転流が可能になるため、局所的 L。低下部 分 (ブリッジ部) に大電流が流れず、クエンチ発生が抑制 されると期待される。

そこで本研究では、REBCO線材に中間層を貫く導電性マイクロパスを作製し、REBCOテープ間でのマイクロパスを介した電流の転流に関して評価した。

2. 実験方法

2・1 導電性マイクロパスの作製

はじめに、REBCO テープに導電性マイクロパスを作製し

た。図2に、導電性マイクロパスの作製方法の概念図を示 す。導電性マイクロパスはUVパルスレーザーとスパッタ リング法を用いて作製した。本研究では、膜厚3µmのAg 安定化層を持つフジクラ製 REBCO テープと 50µm 厚の基 板 (FESC-S12)を使用した。まず、図2(a)に示すように、 REBCO テープにレーザーを照射し、マイクロパスとして穴 を作製した。レーザーパラメータは、様々な条件から最適 化を行い、その結果周波数 80kHz、波長 355nm、Q パルス 幅 0.1µs、走査速度 50mm/s と固定した。作製したマイク ロパスのサイズとしては一辺が 500µmの正方形とした。 次に、図 2(b)に示すように、テープ上にスパッタリング 法で厚さ 3µmのAg 膜を成膜し、パスに導電性を機能とし てほどこした。

図2 導電性マイクロパスの作製方法の概念図

このマイクロパスがハステルロイ基板に到達している ことを確認するために、レーザーで作製した穴と導電性マ イクロパスの微細構造を走査型電子顕微鏡(SEM)S-3400N (日立ナノテクノロジー社製)で観察した。また、エネル ギー分散型X線分光分析装置(EDX)(Inca E2H, OXFORD INSTRUMENTS)により、マイクロパス周辺の元素の空間分 布を分析した。図3はReel to Reelで図2の方法で作製 する装置概念図と写真である。

図3 長尺導電性マイクロパス線材作製のための Reelto Reel レーザ加工装置の概念図と写真

2・2 導電性マイクロパスによる線材間転流の検証

導電性マイクロパスを導入した2本の線材を用いて、導 電性マイクロパスを介した線材間転流を評価した。図4に、 線材間転流試験の実験模式図を示す。図4(a)のように、 2本の導電性マイクロパスを導入した線材、Tape1とTape 2を重ね、その間に高純度A1シートを挟んだ。テープ1の 中央部には、局所的なI。損傷部分として幅3mmのブリッ ジ部を加工した。各部分における電圧を測定するため、図 4(a)に示すように合計 12 個の電圧タップを設置した。例 えば、電圧タップAはテープ1の電圧を、電圧タップT1 とT2はテープ間の電圧を、またその他の電圧タップはテ ープ2の各部分の電圧を測定した。液体窒素中で直流電流 を1A/sで増加させながらテープ1に印可し、各電圧タッ プにおける電圧を測定した。本転流試験では、まずテープ 1のみに電流を印可し、ブリッジ部の *I*。以上の電流が印可 された場合にテープ2 に転流が発生する挙動を想定して いる。図5には上記の転流実験の流れの詳細を示す。

図5 線材間転流試験の実験方法の詳細概念図

3. 実験結果

3・1 導電性マイクロパスの作製

図6にAgスパッタリング前後のそれぞれのマイクロパ スの(a)(d)SEM画像、(b)(e)EDXマッピング分析、(c) (f)高さプロファイルを示す。図6(a)に示すように、Ag スパッタリング前の穴には、Ni元素は検出されたが、Ce 元素は検出されなかった。また、図6(c)に示すように、高 さプロファイルから穴の深さは 5~8µm であることが確 認され、テープの金属基板まで到達していることが分かる。 一方、図6(e)に示すように、Agスパッタリング後の孔に は、Ag元素は検出されたが、Ni元素は検出されなかった。 したがって、この穴はスパッタリングした Ag 膜によって 埋められていることが確認された。

図6 Ag スパッタリング前後のそれぞれのマイクロ パスの(a)(d) SEM 画像、(b)(e) EDX マッピング分 析、(c)(f) 高さプロファイル。

3・2 導電性マイクロパスによる線材間転流の検証

次に導電性マイクロパスを介した線材間転流に関する 実験結果を示す。図7は、線材間転流試験結果((a) 導電 性マイクロパスなし、(b) 導電性マイクロパスあり)を示 す。これらの横軸は、電圧タップAで測定した各 Tape1 の 臨界電流 I_{o} で規格化した(I_{c} =(a) 218.1 A, (b) 181.0 A)。 ただし、電界基準は 1μ V/cm とした。

図 7 線材間転流試験結果((a) 導電性マイクロパスな し、(b) 導電性マイクロパスあり)。これらの横軸は、 電圧タップAで測定した各 Tape1 の臨界電流 *I*。で規格 化した。

導電性マイクロパスがない REBCO テープは、図 7(a)に 示すように、 $I/I_c < 0.8$ では、電流が臨界電流以下であるた め、全ての電圧タップの電圧は 10⁻⁷ V 程度であり、ノイズ 電圧のみが観測された。 $I/I_c > 0.8$ では、テープ 1 のブリッ ジの電圧が上昇したため、 V_A 、 V_{T1} 、 V_{T2} が上昇した。電圧タ ップ A で測定した n 値は $I/I_c = 1$ において 23.9 であった。 一方、Tape 2 に取り付けた他の電圧タップでは、10⁻⁷ V 程 度の電圧となり、ノイズ電圧のみが観測された。 $I/I_c = 1.05$ において全ての電圧タップの電圧が急激に上昇して、テー プ 1 は焼損した。

図 7 (b) の導電性マイクロパスを持つ REBCO テープで は、 I/I_c <0.8 で電圧が上昇するまで、図 7 (a) と同様の特 性が観察された。電圧タップ A で測定した n 値は、 0.8< I/I_c <1.1において 20.6 であった。 I/I_c >1.1では、以 下に述べるように異なる挙動が見られた。1.05< I/I_c <1.1 では、 I/I_c =1.1で急激に電圧が上昇した後、V_A、V_{T1}、V_{T2}の 上昇が 10⁻² V 程度で緩やかになった。V_{R1}の電圧上昇も 10⁻⁵ V 程度で緩やかになった。これらの電圧は図 7 では一定 に見えるが、実際は直線的に上昇した。これはテープ 1 に 印加する電流が増加してもブリッジを流れる電流が一定 になったためである。以上のことから、1.1< I/I_c <1.05 で テープ 1 からテープ 2 へ線材間転流が発生したと考えら れる。図 8 にはこの線材間転流に関して概念図を用いてし めしている。

図 8 本研究で得られた導電性マイクロパスを用いた 線材間転流に関する概念図

4. 結論

本研究では、REBCO線材間転流により導体の安定性を向 上させるため、REBCO線材へ REBCO線材の中間層を貫通す る電流経路である導電性マイクロパスの導入を提案した。 まず、UV パルスレーザーとAgスパッタリング法を用いて、 REBCOテープに導電性マイクロパスを作製した。その結果、 作製した穴がテープの金属基板に到達し、その穴内部に蒸 着したAgが充填されていることを確認した。次に、導電 性マイクロパスのある REBCO線材と導電性マイクロパス のない REBCO線材を用いて線材間転流の評価を行った。そ の結果、導電性マイクロパスがない REBCO線材では線材間 転流は発生しなかった。一方、導電性マイクロパスがある REBCO線材では、線材間転流が発生した。以上のことから、 導電性マイクロパスを導入することで、線材間での転流が 発生することが示された。 今後、導電性マイクロパスを有する REBCO テープを用いた REBCO 積層テープ導体は、テープ間の電流を共有し、導体安定性を向上させることが期待される。

謝 辞

本課題は公益財団法人天田財団の 2020 年度一般研究開 発助成によって行われたものであり、ここに感謝の意を表 します。

参考文献

- Nagaya, Shigeo, et al. "The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan." *Cryogenics* 52.12 (2012): 708-712
- S. Yokoyama, J. Lee, T. Imura, T. Matsuda, R. Eguchi, T. Inoue, T. Nagahiro, H. Tanabe, S. Sato, A. Daikoku, T. Nakamura, Y. Shirai, D. Miyagi, and M. Tsuda: IEEE Trans. Appl. Supercond., 27 (2017) 4400604.
- 3) J. Bascuñán, S. Hahn, T. Lecrevisse, J. Song, D. Miyagi,

and Y. Iwasa: IEEE Trans. Appl. Supercond., **26** (2016) 4300205.

- B.N. Sorbom, J. Ball, T. R. Palmer, F. J. Mangiarotti, J. M. Sierchio, P. Bonoli, C. Kasten, D. A. Sutherland, H. S. Barnard, C. B. Haakonsen, J. Goh, C. Sung, and D. G. Whyte: *Fusion Eng. Des.*, **100** (2015) pp. 378-405.
- 5) T. Mito, Y. Onodera, N. Hirano, K. Takahata, N. Yanagi, A. Iwa-moto, S. Hamaguchi, S. Takada, T. Baba, and N. Chikumoto: 4 (2020) 035009.
- Y. Onodera, T. Mito, N. Hirano, K. Takahata, N. Yanagi, A. Iwamoto, H. Chikaraishi, S. Hamaguchi, S. Takada, T. Baba, N. Chikumoto, A. Kawagoe, R. Kawanami: MT27 (2021) TUE-PO1-606-04.
- Y. Iijima, N. Tanabe, O. Kohno and Y. Ikeno: Appl. Phys. Lett. 60 (1992) 769.
- 8) 電気学会:「電気学会大学講座 超伝導工学」株式会 社オーム社,(1998).
- A. Ishiyama, et al.: IEEE Trans. Appl. Supercond., 15 (2005) 1659-1662.