ワイヤアーク AM-切削複合化による3次元冷却管を有する

大型精密金型の高能率造形

金沢大学 設計製造技術研究所 助教 山口 貢 (2020 年度 奨励研究助成(若手研究者枠) AF-2020035-C2)

キーワード:アディティブ・マニュファクチャリング,指向性エネルギ堆積法,ワイヤアークAM

1. 研究の目的と背景

世界的なCO2排出規制の導入と燃料価格高騰の影響を受 け,軽量化を目的に航空機や自動車の構造材料として炭素 繊維強化プラスチック (Carbon Fiber Reinforced Plastic: CFRP)の採用が拡大されてきている. ダイス鋼 など通常の工具鋼(線膨張係数: 12.5×10⁻⁶/K)を CFRP 成形用の金型材料に適用した場合, CFRP の熱膨張特性(線 膨張係数: 1.0×10⁻⁶/K以下)との違いに起因して成形部 品の寸法精度が悪化する. すなわち, CFRP と同等の熱膨 張特性を有するインバー合金を金型材料に適用すること で,高い寸法精度の成形部品の製造が可能となる.しかし ながら、大型・複雑形状の金型製作では削り出しによる材 料ロスが多いことに加え,インバー合金は高価かつ難削材 であるため製造コストが高くなることが課題である.その ため、ニアネットシェイプに付加加工が可能な金属材料を 用いたアディティブ・マニュファクチャリング (AM) がこ れらの課題を解決する手法として期待されている.

本研究は、金属 AM の中で指向性エネルギ堆積法 (Directed Energy Deposition: DED) に分類されるワイヤ アーク AM を対象とする.本手法はアーク放電を利用し、供 給する金属ワイヤ先端を局所的に加熱して溶滴を形成させ、 母材上に積層させることで3次元形状を得るプロセスであ る.アーク溶接と異なり溶滴の積層を繰り返すため、造形 物内部への蓄熱に起因して溶融状態が変化し、造形物の形 状精度を悪化させる要因となる¹⁾.ワイヤアーク AM は他の 金属 AM と比較して造形効率に優れ、大型部品を短時間で造 形できる特長を有しているが、入熱の制御や管理が難しく、 造形物内部の気孔に起因した機械的強度の低下や²⁾、金属 組織の不均一さによる強度異方性など³⁾、実用化に向けて 解決すべき課題が多い.

ここでは、低い線膨張係数を有する Fe-36wt%Ni インバ ー合金をワイヤアーク AM に適用し、造形時のアークの挙 動や金属ワイヤの溶滴移行現象を含む造形プロセスを系 統立てて整理するとともに、主なプロセスパラメータであ る電流、電圧、ワイヤ供給速度、送り速度がライン造形物 の形態変化におよぼす影響を調べた.また、冷却管を有す る CFRP 成形用金型の製作への適用を目的として、加工テ ーブルのチルト角度がオーバーハング構造の造形精度に およぼす影響を調べた.さらに、中空構造を有する冷却管 モデルの角度やサイズが造形精度におよぼす影響を調べ るとともに、ワイヤアーク AM と切削加工の複合プロセス を提案し、金属 AM において難形状である四角形の断面形 状を有する冷却管の造形を検討した結果を報告する.

2. 実験方法

2・1 実験装置およびライン造形実験

造形実験には、5軸立形マシニングセンタに溶接トーチ が付帯されたハイブリッド複合加工機(ヤマザキマザック 株式会社: VARIAXIS j-600/5X AM) を用いた. 本装置は電 流,電圧の変化に伴いワイヤ供給速度が自動で制御される 仕様である.電流,電圧,ワイヤ供給速度の関係を図1に 示す. ワイヤ材料には ø 1.2 mm のインバー合金 (ニッコ 一熔材工業株式会社: IN-36NbM), 基材には 150 mm×150 mm ×10 mm のステンレス合金 (SUS316L) を用いた. 造形条 件を表1に示す. 電流を75~238 A, 電圧を8~14 V, ワ イヤ供給速度を 2~12 m/min, 送り速度を 500~2000 mm/min に変化させ、Ar シールドガスをワイヤの同軸上に 流量 15 L/min で供給しながら造形を行った. 初めに,造 形時のアークの挙動や金属ワイヤの溶滴移行現象を高速 度カメラを用いて観察するとともに、これらのプロセスパ ラメータが造形最小単位であるライン造形物の形態変化 におよぼす影響を調べた.得られた造形物の形状は,形状 測定センサ(オプテックス・エフエー株式会社, LS-100CN) を用いて測定し、造形物の断面プロファイルから高さと幅 を評価した.

表1 造形条件	
プロセスパラメータ	
電流 [A]	75 - 238
電圧 [V]	8 - 14
ワイヤ供給速度 [m/min]	2 - 12
送り速度 [mm/min]	500 - 2000
シールドガス	Ar
ガス流量 [L/min]	15
金属ワイヤ	
材質	Fe-36wt%Ni
直径 [mm]	1.2
基材	
材質	SUS316L
_ 寸法 [mm] × [mm] × [mm]	$150 \times 150 \times 10$

2・2 オーバーハング構造の造形実験

オーバーハング構造の造形モデルを図2に示す.造形モ デルは基材とのなす角度が60°である.加工テーブルの チルト角度がオーバーハング構造の造形精度におよぼす 影響を調べるため,電流を101 A,電圧を8.6 V,送り速 度を500 mm/minに固定し,チルト角度を0°,30°に変 化させて造形を行った.K型熱電対を用いて造形物表面の 温度を測定し,室温まで冷却した後に次層を造形するプロ セスを10 層繰り返した.層毎の造形物の断面プロファイ ルを形状測定センサを用いて取得し,輪郭線を重ね合わせ ることで,造形モデルに対する形状誤差を評価した.

図2 オーバーハング構造の造形モデル

2・3 中空構造を有する冷却管の造形実験

中空構造を有する冷却管の造形モデルを図3に示す.角 度 θ に傾斜させた直線と造形物断面の輪郭線の交点に,次 層の造形物中心が重なるようにモデルを設定した.造形条 件は,電流を101 A,電圧を8.6 V,送り速度を500 mm/min, 層間の冷却時間を60 s に固定し,角度 θ を 50~70°, サ イズ wを10~20 mm に変化させたときの造形角度の実測値 と目標値に対する誤差を評価した.造形角度の評価方法を 図4に示す.形状測定センサを用いて造形物の断面プロフ ァイルを取得し,ベースプレートとのなす角度を造形角度 として評価した.

図3 中空構造を有する冷却管の造形モデル

また、ワイヤアーク AM と切削加工の複合プロセスによ り、金属 AM において難形状である四角形の断面形状を有 する冷却管の造形を検討した.まず、φ6 mm のエンドミ ルを用いて基材に4 mm の深さの溝加工を行い、異なる厚 さのステンレス合金板材を基材上に固定した.その後、電 流、電圧、ワイヤ供給速度を変化させて板材上に造形を行 った.得られた造形物をワイヤ放電加工機を用いて切断し、 サンドペーパで研磨した後、板材や基材の溶け込み形状、 冷却管の断面形状を評価した.

3. 実験結果

3・1 溶滴移行形態およびライン造形物の造形特性

造形時の溶滴移行サイクルの一例を図5に示す.ワイヤ 先端からアークが発生した直後(図5a),アークは勢いを 増すとともに(図5b),ワイヤ先端に溶滴が形成される(図 5c).ワイヤの送給により,溶滴は溶融池と短絡し(図5 d),溶融金属の液柱が形成された後,溶滴は溶融池に吸収 される(図5e).溶滴が脱離した直後,ワイヤ先端からア ークが再発生する(図5f).造形中はこれらのプロセスが 繰り返され,造形条件によらず溶滴移行形態は全て短絡移 行であった.

電流,送り速度を変化させたときのライン造形物の高さ と幅の変化を図6に示す.電流を高く,送り速度を低くす るにつれて,造形物高さ,幅は増加した.電流が75 A, 送り速度が2000 mm/min の条件では,造形物高さと幅は共 に1.0 mm であった.一方,電流が238 A,送り速度が500 mm/min のとき,高さが3.0 mm,幅が7.1 mm の造形物が得

(d) 6 ms

(e) 10 ms図5 造形時の溶滴移行サイクルの一例

(f) 11 ms

られた.これらの結果は、ライン造形物の形状は造形条件 によって著しく異なり、適用する部品サイズ・形状に合わ せて適切な条件を選定する必要があることを示している.

3・2 オーバーハング構造の造形特性

チルト角度を変化させたときのオーバーハング構造物 の断面形状の比較を図7に,外観の比較を図8に示す.図 中の白色プロットは,層毎の(目標)造形位置を示してい る.チルト角度が0°の条件では,造形モデルの中心(図 中実線)に対して造形物の輪郭線が5層目から傾いており, 目標の造形位置に造形ができていない.一方,チルト角度 が30°のとき,層毎の造形位置と造形物の輪郭線が概ね 重なっている.チルト角度が30°の条件では,溶融池下 部に既造形物が存在することで重力による造形物の垂れ 3 軸制御による造形プロセスでは, NC プログラミングが 容易であることが利点である.そこで,チルト角度が0° の条件で造形精度の向上が可能な補正プロセスを検討し た.図9に示すように,1層目の造形物の中心位置を原点 として,基材とのなす角度が60°の直線を作成し,その 直線と層毎の造形物の輪郭線とを重ねることで,2層目以 降の造形位置を算出した.補正プロセスを適用して得られ た造形物の断面形状を図10に示す.図7(a)の補正な しの結果と比較して,造形モデルに対して造形物の輪郭線 中心の差異が小さく,目標の造形位置に正確に造形ができ ている.これらの結果は,層毎の造形物の輪郭線に基づい て造形位置を補正することで,造形物の形状精度を向上で きることを示している.

が少なく、造形プロセスが安定したためと考えられる.

(a) 0°
(b) 30°
図8 チルト角度の違いによる造形物外観の比較

3・3 中空構造を有する冷却管の造形特性

造形モデルの角度を変化させたときの中空構造物の造 形角度の変化を図11に示す.図中のR軸は、目標値に対 する造形角度の誤差を示している.角度を小さくするにつ れて、目標値に対する誤差は増加した.造形モデルの角度 が小さい条件では、オーバーハング形状に起因して形状乱 れが大きくなることが要因と考えられる.

造形モデルのサイズを変化させたときの中空構造物の 造形角度の変化を図12に示す.モデルサイズを大きくす るにつれて,目標値に対する誤差は増加した.モデルサイ ズが大きくなるにつれて積層回数が増加するため,層間の 冷却時間が一定の条件では造形物内部への蓄熱に起因し て形状乱れが大きくなることが要因と考えられる.

断面形状が三角形の冷却管の一例を図13に示す.図は, 造形モデルの角度を 60°に設定したときの結果である.

均一な三角形の断面形状が得られており,これらの結果は 従来の切削加工では創成が不可能な流路形状の創成が可 能であることを示している.

断面形状が四角形の冷却管の一例を図14に示す.金属 AMにおいて水平方向のオーバーハング形状(角度90°)は 最も造形が難しいが,切削加工との複合プロセスにより冷 却管上面に形状乱れのない良好な断面形状を得ることが できた.しかしながら,基材上に配置した板材の適切な溶 け込み形状を得るために中空構造の中心部と周辺部で造 形条件を適宜調整した.これらの結果は,ワイヤアーク AMの特長を活用し,部分的に溶け込みを制御することで 異なる部材上に造形が可能であることを示しているが,板 材の大きさや厚みによって熱容量や熱伝導性が変化して 溶け込み形状に影響するため,材料特性を考慮した造形条 件の選定が必要であり,これらは今後の研究課題である.

図11 角度の違いによる造形角度の変化

図13 三角形の断面形状の冷却管

4. 結論

低い線膨張係数を有する Fe-36wt%Ni インバー合金をワ イヤアーク AM に適用し,電流,電圧,ワイヤ供給速度, 送り速度がライン造形物の形態変化におよぼす影響を調 べた結果, ライン造形物の形状は造形条件によって著しく 異なり,適用する部品サイズ・形状に合わせて適切な条件 を選定する必要があることが明らかになった.また,加工 テーブルのチルト角度がオーバーハング構造の造形精度 におよぼす影響を調べた結果, 溶融池下部に既造形物が存 在するように基材の設置角度を調整することで,重力によ る造形物の垂れが少なく,造形プロセスが安定することが 明らかになった.3軸制御により造形を行うとき,層毎の 造形物の輪郭線に基づいて造形位置を補正するプロセス を適用することで、造形物の形状精度を向上できる. さら に、中空構造を有する冷却管モデルの角度やサイズが造形 精度におよぼす影響を調べた結果,モデルの角度が小さく, かつサイズが大きくなるにつれて造形精度が悪化するこ とが明らかになった.

図12 サイズの違いによる造形角度の変化

図14 四角形の断面形状の冷却管

謝 辞

本研究は、今後も継続して実施する予定である.本研究 を遂行するにあたり、公益財団法人天田財団のご支援を頂 いたことに深く感謝申し上げます.

参考文献

- 1) D. R. Corradi et al., Effect of Magnetic Arc Oscillation on the geometry of single-pass multi-layer walls and the process stability in wire and arc additive manufacturing, J. Mater. Process. Technol., 283 (2020) 116723.
- 2) R. Biswal et al., Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4V, Addit. Manuf., 28 (2019) 517-527.
- C.V. Haden et al., Wire and arc additive manufactured steel: Tensile and wear properties, Addit. Manuf., 16 (2017) 115-123.