次々世代超高速微細加工に向けたフェムト秒レーザーの

完全自動コヒーレント結合に関する研究

量子科学技術研究開発機構 関西光量子科学研究所 先端レーザー科学研究グループ グループリーダー 桐山 博光 (2019 年度 一般研究開発助成 AF-2019226-B3)

キーワード:フェムト秒レーザー,コヒーレント結合,微細加工

1. 研究の目的と背景

これまでのレーザーパワー拡大の原動力は大口径増幅 器の開発であった。レーザー損傷を避けるために、パワー 増大に応じて増幅器口径は大きくなり、核融合研究用レー ザーでは 40 cm 角にも達する¹⁾。これ以上の大口径化は、 レーザー媒質内の寄生発振等によりレーザー増幅効率が 低下するため、この最も単純で確実な技術は限界にきてい る。従って、レーザーパワーを桁違いに高く、且つ、小型 装置において極限まで高めるには、既往の技術の延長線上 にないパラダイムの転換が求められる。

ビーム数に比例した出力を生むコヒーレントビーム結 合は1960年以来、夢のレーザー技術であるが、ビーム径 拡大によるパワー増大は限界に達しつつある現状を踏ま え、いよいよこの結合法によるハイパワーレーザー開発に 本格的に取り組む時期が来たと言える。

本研究では、技術的に未開拓な時間空間分割された高 出力レーザーの受動コヒーレント結合の実証を行い、現状 のペタワット (PW=10¹⁵ W) 級²⁾を超える極限的レーザー出 力を実現できる基盤技術を確立する。

これまで各研究機関においてコヒーレントビーム結合 が研究されてきたが、レーザー増幅媒質が小口径のファイ バーに限られ^{3.4)}、且つ空間的にビームを分割するだけで あるため、パワースケーリングが難しい。また、空間的に 分割した複数のビームのレーザーの光路長、即ち、位相を 揃えるための高精度・高速能動制御が必要なため、高繰り 返しレーザー発振が前提でシングルショット等の高エネ ルギー・低繰り返しレーザーや干渉性の低い高ピークパワ ー・極短パルスレーザーには不向きであり、この手法の適 応は限定的なものであった。また、各ビーム光路を能動的 に超精密に合わせたとしても、各ビーム波面は同じになら ない。そのため、波面合成後にも時間空間強度変調の影響 は残留し、ビーム結合効率の大きな低下をもたらす。

この問題を解決するため、本研究では各ビームの波面、 即ち位相が受動的に一致するコヒーレント結合系を開発 する。入力レーザー光を時間空間的に分割することにより、 各ビーム出力を低減させる。時間的にも分割することで従 来に比して劇的なパワースケーリングが可能となる。更に、 分割ビームは各々の固体レーザー増幅器を用いることに より、光学損傷無しに驚異的なパワー増幅を得た後に1 ビームに結合され、極高パワーレーザーを発生させること ができる。現在、1-10 PW 出力が寄生発振のため限界であ るが、本光学系で、各分割パルスを 10 PW 出力まで増幅・ 結合することで、寄生発振の制限を超えたエキサワット (EW=10¹⁸ W) パワーを実現できる。

超高強度レーザー開発において、結晶や回折格子等光学 素子の製造可能な大きさの技術的制限、光学系のレーザー 損傷や寄生発振からの物理的制限があり、大口径化による 飛躍的なパワー増大は限界域に達している。今回提案する 技術は、現状の出力を飛躍的に高めうる可能性を秘めてい る。

2. 研究・実験方法

2・1 研究方法の概要

本研究の特徴的な点は、時間的空間的にレーザービーム を巧みに分割し、それら複数のビームが同じ光路を伝搬す るように工夫するとともに、固体レーザー増幅器で大幅に 出力を増幅させることである(図1)。

図1 本研究の概念的な説明

これまでの研究では、図2に示すように入力レーザーパ ルスを空間的に偏光ビームスプリッター (PBS) で2つの パルスに分割し、マッハツェンダー干渉計に配置されたフ ァイバーレーザー増幅器により増幅する。その後、位相検 出部から位相制御部にフィードバックを行うことにより、 各レーザーパルスの光路長、即ち位相を精密に揃えて結合 する方法が用いられてきた。この従来法では、ファイバー レーザーは小口径であり、空間的に分割するだけであるた め、高エネルギー動作に不向きでパワースケーリングが難 しい。

図2 位相能動整合コヒーレントビーム結合

本研究では、位相受動整合コヒーレントビーム結合の ためにサニャック干渉計を用いる(図3)。PBSより分けら れたP偏光とS偏光のビームをそれぞれ増幅後、ふたたび PBSにより合波される。それぞれのレーザーパルスが同じ 光路を通ることになるため、位相が自動的に一致する。そ のため位相制御装置が不要となり、位相能動整合では不可 能な低い繰り返し周波数のレーザーにも適用できる。

図3 位相受動整合コヒーレントビーム結合

2・2 実験系の概要

本研究では、PBS とミラーから構成されるサニャック干 渉計2つを用いてビームを4分割する完全受動コヒーレン ト結合を行う。実験系の構成を図4に示す。レーザーパル スは図面左上から下に向かって入射した後、1/2波長板に よってP偏光となり、2枚のミラーを用いてアパーチャー A1、A3 を結ぶ光路を伝搬する。この光路をメインライン と定義する。この直線光路を実験系の調整基準とする。レ ーザーパルスは A1 透過後 PBS を通過し 1/2 波長板によっ て偏光が 45°回転させられる。この偏光状態の操作によ って1つ目のサニャック干渉計でレーザーパルスは2パル スに等分される。S偏光のパルスは M3、M4 によって反射 した後メインラインへと戻る。メインラインへのパルスの 復帰は M3、M4 の角度を光がアパーチャーA2、A3 を通るよ うに調整することで担保される。復帰の後、S偏光のパル スは P 偏光のパルスよりも長い光路長を伝搬しているた め2つのレーザーパルスの時間位置にずれが生じ、レーザ ーパルスの時間的な分割が可能となる。

2 つのレーザーパルスの偏光をファラデーローテータ で 90°、波長板で 45°、それぞれ同じ方向に回転させた

後、2つ目のサニャック干渉計に入射する。ここで用いた ファラデーローテータはファラデー効果で45°、内蔵す る旋光子で 45° させるものである。この時 2 つのレーザ ーパルスはそれぞれP偏光成分とS偏光成分を等しくもっ ているために2つ目のサニャック干渉計で等分され、合計 で4つのレーザーパルスが干渉計内を伝搬することとな る。2 つ目のサニャック干渉計で空間的に分割された各レ ーザーパルスは、干渉計内を右回り、左回りする2つのパ ルスは共に 1/2 波長板で 90° 偏光を回転させる。これに よって再びPBSに入射した際にパルスが4つから2つへと 結合するだけでなく、それぞれ光学系を戻るように伝搬す ることとなる。2つ目の干渉計透過後、ファラデーローテ ータを通過する光は偏光角が変化しない。これはファラデ ーローテータ内での偏光操作が打ち消されるためである。 そのため、1 つ目の干渉計に入射する時は往路とは 90 度 ずれた偏光状態でいることになる。そのため往路で時間位 置が先行していたパルスに時間遅延が加わり、2パルス間 の時間遅延が補償され時間的に結合し単一パルスが生成 される。便宜上、2つのサニャック干渉計のうち、時間的 分割を担うものを1st サニャック、空間的分割を担うもの を 2nd サニャックと呼ぶこととする。

図4 デュアルサニャック干渉計を用いた 位相受動整合コヒーレント結合光学系

図5に本研究でCBC固体レーザー増幅の実証に用いた多 重パス光学系の概略図を示す。

この増幅光学系では前段のデュアルサニャック光学系 で4分割したパルスをそれぞれ4回ずつ、励起されたチタ ンサファイア結晶に入射させることによって増幅を行う。 2nd サニャック干渉計とは図4右下のフリップミラー(M8、 M9)を用いることで接続できる。

励起レーザーには、波長 532 nm 、パルス幅 0.3 ns、繰

り返し周波数10 Hz の Nd: YAG レーザーを用いた。フォト ニック結晶ファイバーを用いて、チタンサファイアレーザ 一発振器の出力光から中心波長1064 nm を含むスーパーコ ンティニウム光を生成する。これをファイバーアンプで増 幅し、ポッケルスセルとビームスプリッタを用いることで 80 MHz から10 Hz へと分周した後、Nd: YAG 固体増幅器で 増幅する。次にLBO 結晶を用いて波長を532 nm へと変換 することで上記の励起用レーザーパルスを発生させた。本 研究ではこの励起レーザーを結晶の片側から入射させる、 片面励起での増幅実験を行った。レーザー増幅の媒質には 直径 20 nm、結晶厚15 nm、吸収効率92.3%の GT ADVANCED 製チタンサファイア結晶を用いた。結晶に入射する4 つの パスは結晶に対して2.5°、5°のいずれかの角度で入射 するよう設計されている。

本研究で用いる光学系は伝播に伴うビーム系の拡大を 抑制するためにレンズ対を用いた像転送光学系を組み込 んでいる。2対4枚の焦点距離2000mmの平凸シングレッ トレンズを多重パス増幅器の光学系に組み込み18mの距 離の伝搬によるビーム径拡大を抑制した。

3. 研究·実験方法

3・1 結合効率とビームプロファイルの測定

結合効率を評価するため、図 6 のような光学系を用いて 結合効率 η_{c} =P_{combined}/(P_{combined}, P_{uncombined})を定義する。

ここで P_{combined} は結合出力光強度、P_{uncombined} は非結合光 強度を指す。素子の持つ旋光角波長依存性や不十分な調整 等が原因で設計通りに結合しなかったレーザーパルスは 結合したレーザーパルスとは異なる偏光角を持つ。これら は出力光を取り出す PBS を直進し、非結合出力を取り出す PBS から出力される。これは上図のように CBC 光学系の上 流にファラデーローテータと 1/2 波長板の偏光回転方向を 入力光に対してそれぞれ相殺し合うように調整すること で、出力光のみ偏光角を 90°回転させる作りにすること が可能である。図7に CBC 光学系を多重パス光学系に接続 した時の結合出力、非結合出力のスペクトル比較を示す。 2 つのスペクトルを波長 734.4~877.0 nm の範囲で積分し 結合効率の計算を行ったところ 94 %の値が得られた。

この結合効率 η 。による光学系の動作評価はコヒーレント結合の先行研究でも行われている。 F. Guichard らに

よるファイバーアンプを用いたパルス幅 300 fs、エネル ギー1.1 mJ の出力を得る 2 分割受動コヒーレント結合で は η_{o} = ~94%である⁵⁾。また、L. Daniault らによる時間 的に4分割、空間的に2分割の計8分割の受動コヒーレン ト結合を用いたファイバーアンプによる 200 fs、200 nJ の増幅を行った研究では η_{o} = ~96%を達成している⁶⁾。 本研究はそれらよりも調整が困難になる固体レーザーで の時空間 4 分割コヒーレント結合でありながら先行研究 とほぼ同じ値が得られており、我々はコヒーレント結合が 本実験系で十分動作していると判断した。

図7 結合光と非結合光におけるスペクトルの比較

図 8 に多重パス増幅器に接続したデュアルサニャック 干渉計光学系の入出力ビームプロファイルを示す。良好な シングルビーム出力を確認した。

図8光学系入射(a)と出射(b)ビームプロファイル

3・2 分割パルス増幅動作の評価

図9に励起エネルギーに対する増幅利得特性を示す。こ こでは、オシロスコープとフォトダイオードで増幅前後の レーザーパルス列のピークを比較することで増幅利得を 評価した。得られた利得の最大値は29であった。実線は Frantz-Nodvikの式⁷⁾で求めた理論特性曲線であり、測定 された利得は概ね理論値と一致している。ここから、別々 に増幅された4つのパルスがそれぞれエネルギーを大き く失うことなく再結合しており、これは分割を行わずに同 エネルギーの単ーパルスを増幅した場合と得られる利得 が遜色ないと判断できる。原理実証を目的とした小型増幅 器により、分割フェムト秒極短パルスを増幅・再結合する ことに成功し、理論限界の増幅利得を実現した。この結果 より、我々の提案するコヒーレント結合法が増幅フェムト 秒レーザー光に対して有効な手法であることが示された。

図9 励起エネルギーに対する増幅利得特性

3・3 テラワット級出力の実現性

本研究において、新たに考案したコヒーレント結合系を 用いて、増幅フェムト秒レーザーパルスの受動コヒーレン ト結合に初めて成功した。この成功を受けて、本光学系に CPA (Chirped-Pulse Amplification)⁹⁾を併用することで、 コヒーレント 結合で得られている最先端領域のギガワッ ト (=GW=10⁹ W) 出力よりも3桁高い、未踏のテラワット (=TW=10¹² W)出力の実現が可能であると考えられる。図10 に TW 出力を想定した受動コヒーレントビーム結合光学系 の概略図を示す。

	Ti:sapphire oscillator	┢	Stretcher	•	OPA Pre-Amplifier	•	Our passive CBC system	Compressor	Output ~1TW, ~30	01
义	10 TW 級	受	動コし		ーレント	結	合システィ	ムのブロ	ック図	

ここでは、OPA 出力を~4 mJ とし、提案する CBC 光学系 内で4つのパルス(各パルス~1 mJ)に分割され、CBC 光 学系内に配置されたディスク型チタンサファイアレーザ ー増幅器で増幅する。励起レーザー(532 nm)は直径 5 mm、 出力 400 mJ とし、チタンサファイアレーザー媒質を各面 1 J/cm²で励起するものとする(両面で 2 J/cm²)。4 つの パルス に対して、2 つずつパルスを同時に対向して 4 回 パスさせることで先の2パルスと後の2パルスのエネルギ ーを一致させ結合効率が向上するように設計する。この場 合、出力エネルギーは、34、34、18.5、18.5 mJ となり、 出力は~100 mJ となる。非線形効果がない場合(B 積分値 10)がゼロの場合)、最初の2パルスと次の2パルスが理想 的な直線変更に戻る。ただし、これらの直線偏光は振幅が 違うので理想的な方位の直線変更に戻らないが、理想的な 方位からのズレを考慮に入れると~96%の結合効率が期 待できる。非線形効果をできるだけ低減するためにビーム 径と出力を最適化することで、非線形効果による結合効率 の低下を数%まで低減できることが計算より予測されて いる。加えて、増幅スペクトル幅やパルス圧縮器のスルー プットを考慮すると、TW (30mJ/30fs) 出力が期待できる。

4. まとめ

次々世代超高速微細加工に向けたフェムト秒レーザー

の完全自動コヒーレント結合光学系を考案した。すなわち、 全ての分割レーザーが同じ光路を伝搬でき、位相ズレをゼ ロとできる(自動で空間破面整合できる)光学系を提案し た。本手法は固体増幅器を用いることができるので、大口 径化が容易でハイパワー化で期待できる。多次元(時空間) 分割による高いパワースケーリングが可能で、原理的に位 相ズレがゼロとできるのでフェムト秒極短パルスレーザ ーの高効率結合が期待できる。本光学系に対して、3次元 波動光学解析による理論限界の結合効率を得るための調 整方法を確立するとともに、像転送光学系を組み込んだレ ーザー増幅器の整備と増幅利得評価を行った。これらによ り、時空間分割増幅フェムト秒レーザーパルスの受動コヒ ーレント結合をに世界で初めて成功した。

謝 辞

本研究は、量子科学研究開発機構の宮坂泰弘主任研究員、 笹尾 一主幹技術員、鈴木健治氏、田上 学氏、岡本征洋氏、 有泉高志氏、同志社大学の戸田裕之教授、鈴木将之教授、 渡邉謙斗氏、水野遥介氏、小田哲秀氏、赤井 仁氏、上野 雄平氏、仲井紀香女史、高津 憩氏、勝 常也氏の協力があ って初めて可能となったものである。これらの関係者各位 に深く感謝致します。

参考文献

- N. C. Danson, C. Haefner, J. Bromage, T. Butcher, F. C. J. Chanteloup, A. E. Chowdhury, A. Galvanauskas, A. L. Gizzi, J. Hein, I. D. Hillier, W. N. Hopps, Y. Kato, A. E. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, H. C. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin,W. C. Siders, C. Spindloe, S. Szatmari, M. G. M. R. Trines, J. Zhu, P. Zhu, and D. J. Zuegel, High Power Laser Sci. Eng. 7, e54 (2019).
- H. Kiriyama, A. S. Pirozhkov, M. Nishiuchi, Y. Fukuda, K. Ogura, A. Sagisaka, Y. Miyasaka, M. Mori, H. Sakaki, N. P. Dover, Ko. Kondo, J. K. Koga, T. ZH. Esirkepov, M. Kando, and Ki Kondo, Opt. Lett. 43, 2595 (2018).
- M. Hanna, F. Guichard, Y. Zaouter, D. N Papadopoulos, F. Druon and P. Georges, J. Phys. B: At. Mol. Opt. Phys. 49, 062004 (2016).
- H. Fathi, M. Närhi and R. Gumenyuk, Photonics 8, 566 (2021).
- F. Guichard, Y. Zaouter, M. Hanna, K. Mai, F. Morin, C. Hönninger, E. Mottay, and P. Georges, Opt. Lett., Vol. 40, 89 (2015).
- L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, and F. Druon, Opt. Express, 20, 21627 (2012).
- L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).

- H. Kiriyama, M. Mori, A. S. Pirozhkov, K. Ogura, A. Sagisaka, A. Kon, T. Z. Esirkepov, Y. Hayashi, H. Kotaki, M. Kanasaki, H. Sakaki, Y. Fukuda, J. Koga, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Kondo, P. R. Bolton, O. Slezak, D. Vojna, M. Sawicka-Chyla, V. Jambunathan, A. Lucianetti, and T. Mocek, IEEE J. Sel. Top. Quantum Electron. 21, 1601118 (2015).
- D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
- 10) A. E. Siegman: Lasers, 386 (1990).