Ti-6AI-4V 合金板の冷間プレス成形法の開発

東京都立産業技術研究センター 開発本部 物理応用技術部 機械技術グループ

主任研究員 奥出 裕亮

(2019年度 奨励研究助成(若手研究者枠) AF-2019041-C2)

キーワード:板材成形,冷間プレス成形,プレスモーション,Ti-6A1-4V合金板,絞りしごき加工

1. 研究の目的と背景

航空宇宙分野では、Ti-6A1-4V 合金は、航空機エンジン 用ならびに機体用素材として活発に適用されている¹⁾.ま た,近年自動車エンジン部品,オートバイ排気系部品とし ての用途も広がりつつある²⁾.しかしながら,冷間におけ る延性が乏しく、プレス成形等の塑性加工においては延性 が向上する 700~900 ℃程度の温度領域で成形が行われる のが一般的である. そのため, プレス成形では, 短時間で Ti-6Al-4V 合金板を所望の加工温度に加熱可能なホット スタンピング法が開発^{3) 5)}されている.ホットスタンピン グ法は、特に800~900 ℃の温度範囲での成形に適用され ている⁶⁾. また, Ti-6A1-4V 合金板のインクリメンタルフ ォーミングにおいては、必要とする塑性変形進行域におい て加熱を行い,成形が終了した領域は温度を下げることが 望ましい観点から,高周波誘導コイルを用いた局所加熱に よって成形域を所望の加工温度として 700 ℃近傍で成形 する手法が開発され、Ti-6A1-4V 合金板に大変形を与える 成形を実現している ^{7)~9)}. また, Ti-6A1-4V 合金板の 400 ℃ の成形温度で絞り比 (Drawing ratio, DR) =1.8の円筒絞 りを達成している¹⁰⁾. 一方で, Ti-6Al-4V 合金板の温間, 熱間成形においては,近年有限要素解析も適用され始めて いる.フローフォーミングにおいて、シングルローラー、 3 ローラー, ウェッジローラーの 3 つの異なるローラー配 置によるフローフォーミングプロセスがモデル化され,ロ ールの送り速度や減肉率等のパラメータとフローフォー ミングにおける成形性を相関させる試みが行われている 11). また, プレス成形では, 有限要素解析を併用した成形 工具設計の試みにおいて,成形時の形状誤差を低減させる ための成形工程の最適化,低コスト化について論じられて いる 12).

一方で、Ti-6A1-4V合金板の常温での成形における研究 例は、常温での成形限界の決定や曲げ成形性の測定^{13),14)}、 または、常温での磁気パルスバルジ成形が試みられており、 成形限界が向上する結果を得ている¹⁵⁾、等の成形として の報告が少ない.しかしながら、常温~温間(24~300℃) での成形は、生産時の低コスト化、量産性向上などのメリ ットが考えられ、冷間成形に取り組む前に、Ti-6A1-4V合 金の温間プレス成形において、成形性向上技術として着目、 適用されているプレスモーション^{15),16)}を活用することで、 筆者らは、低延性の条件下においても成形可能となる手法 を開発した.開発した手法では、低延性の材料において薄 肉化の進行を促す一つの要因となるしわ抑え力に着目し、 材料に変形を付与する際には、しわ抑え力を負荷しない状 態で成形する発想に至った^{17),18)}.具体的には、従来のプ レスモーションと異なり、パンチとしわ抑え板の稼働をそ れぞれ独立して行い、しわ抑え力を負荷しない状態でパン チを稼働する工程と、瞬間的に材料にしわ抑え力のみを負 荷する工程に分離し、それぞれの工程を交互に行う逐次成 形法を開発した.さらに、逐次成形法では、フランジ部の 厚肉化が顕著に生じるため、厚肉化を抑制するために、絞 り成形を逐次成形後に実施することで厚肉化を回避する 手法を開発した^{19,201}.

本研究では Ti-6A1-4V 合金の温間逐次成形から得られた 知見を発展して, Ti-6A1-4V 合金板の冷間絞りしごき成形 に適用し,有限要素解析と実験により常温における成形法 の効果を実証した.

2. 冷間絞りしごき成形実験条件および結果 2.1 供試材および試験装置

Ti-6A1-4V 合金板の冷間成形における円筒深絞り成形 性を評価するために,一般的な一定しわ抑え力(Blank Holding Force, BHF) を負荷する円筒深絞りを最初に行っ た. Ti-6A1-4V 合金板 (板厚 $t_0 = 0.5$ mm, $\phi = 60$ mm) を 用いた.後述の絞りしごき成形と同条件で評価するために, フランジ部の摺動補助を目的として,成形前のブランクに は、大気炉において 500 ℃で 2 時間保持することで表面 に 3000Å程度の酸化被膜を生成した. 試験機にはエリク セン試験機 (Erichsen 社製, 140 - 40型) を用いた.図 1に、円筒深絞り成形の模式図を、表1に、本実験に使用 した成形部の寸法を示す.ダイス材質は SKH51 (JIS) と し、ダイス内径 D_d = 33.8 mm、ダイス肩半径 R_d = 3.0 mm と D_d = 34.0 mm, R_d = 3.0 mm の2種類を用いた.この場合, 絞り比 DR は 1.85 となる. 図 2 の絞りしごき成形模式図 に示すように、板材から絞り成形を行う際のクリアランス t'を初期板厚 t_a以下に設定することでカップの成形と同 時に肉厚をしごく工程を行う絞りしごき成形を対象に,こ れらの絞りダイスにおいて公称しごき率は D_d = 33.8 mm (公称しごき率 $(t_0 - t') / t_0 \times 100 = 20$ %), 34.0 mm (公称しごき率0%)を採用して試験を行った.

2·2 試験結果

試験温度は金型およびブランクを常温 (24 ℃) として 試験を行った. パンチ速度は 60 mm/min とし,一定しわ抑 え力は 4 kN で負荷した. ブランクと金型間は無潤滑で円 筒深絞り成形を行った. 図 3 に,円筒絞り実験結果として 実験後のカップ写真を,図 4 に,パンチ荷重-パンチスト ローク曲線を示す. D_{d} = 33.8 および 34.0 mm の金型どち らの条件においてもパンチ肩部で破断した. D_d = 33.8 と 34.0 mm を比較すると, D_d = 33.8 mm は公称しごき率が 20% であり, パンチ肩部の終端近辺からしごき成形に移行する ため, D_d = 34.0 mm に比べて破断に至るまでのパンチスト ロークの 3.5 mm 程度の低減が確認できる. 破断するまで のパンチストロークには差が生じるが, どちらのダイス内 径においても一定しわ抑え力を負荷した状態での絞りし ごき成形は困難であることを確認した.

図1 円筒深絞り成形模式図

双王门间保险了成份的 约为伍		
ダイス	直径: D _d	33.8, 34.0 mm
	肩半径: R _d	3.0 mm
パンチ	直径: D _d	33.0 mm
	肩半径: R _d	5.0 mm

表1 円筒深絞り成形部の寸法

図2 絞りしごき成形模式図

図3 実験後のブランク写真

3. 冷間絞りしごき成形シミュレーション条件およ び結果

前章で一定しわ抑え力を負荷した状態での絞りしごき 成形が困難であることを確認したため、筆者らが Ti-6A1-4V 合金板の温間プレス用に開発した逐次成形を Ti-6A1-4V 合金板の冷間絞りしごき成形に適用した.本章 では,逐次成形を適用した冷間絞りしごき成形の有限要素 解析を行い,逐次成形の効果の解明を行った.

3・1 逐次プレス成形法²¹⁾

パンチ肩部での減肉を抑制した状態でプレス成形を実 施するために、①パンチモーション工程と②しわ抑え力負 荷工程の2工程に独立させた.図5に,開発した逐次成形 工程概念図を示す. ①パンチモーション工程では、しわ抑 え力を負荷しない状態で、パンチのみをパンチ速度 S_{ni} パンチストローク P_{si}で変位させる.本工程において、し わ抑え力を負荷しない状態 ($BHF_i = 0$ kN) ではあるが, しわ抑えとダイスに接触して反力を受けながらブランク は金型に流入する. ②しわ抑え力負荷工程では, パンチモ ーションを止めた状態で衝撃的に通常のしわ抑え力の 10 倍程度のしわ抑え力 BHF; をブランクに負荷することで, ①パンチモーション工程で生じるしわ,もしくはしわの前 段階となる縮みフランジによりブランクのフランジに生 じる圧縮応力の集中を抑制する工程となる. ①と②の工程 を交互に繰り返して行うことで,金型に沿った形状を材料 に付与し、パンチ肩部での破断を抑制した状態でのプレス 成形が可能となる.

3.2 有限要素解析条件

汎用動的陽解法解析コード LS-DYNA3D を有限要素解析 に用いた.図6に解析モデルの模式図を示す.解析モデル の寸法は、表1 中に示される実験と同様に、ダイス内径 D_d = 33.8 mm、ダイス肩半径 R_d =3.0 mm を用いた.また、 パンチ直径 D_p = 33.0 mm、パンチ肩半径 5.0 mm のパンチを 用いた.解析モデルは、ブランクを弾塑性体ソリッド要素 (板厚方向の要素分割数:2,6面体8接点要素)、金型を 剛体ソリッド要素とし、それぞれを境界条件のないフルモ デルで構築した.また、ブランクは Lankford 値(r値)に基 づく異方性を考慮した.

 σ

供試材は板厚 $t_0 = 0.5$ mm, 直径は $\phi = 60$ mm (DR = 1.85) とした.初期温度は実験と同様に常温 (24 °C)を想定し, 供試材は以下の Swift の硬化則を適用した.

(1)

$$=C \overline{\varepsilon_n}^n$$

ここで、*C* は塑性係数、 ε_p は相当塑性ひずみ、および *n* は加工硬化指数である.材料特性値は表 2 に示す 24 ℃の Ti-6Al-4V 合金板の引張試験から得られた *C*値、*n*値およ び Lankford 値を適用した.供試材と金型との摩擦係数は 前処理なしのブランクを適用した場合を 0.1²¹⁾とした. 一 方で、摺動補助を目的として大気炉において 500 ℃で 2 時間保持することで表面に 3000 Å程度の酸化被膜を生成 したブランクを適用した場合は 0.05 と設定した.

解析条件は, $P_{si} = 0.4 \text{ mm}$, $BHF_i = 50 \text{ kN} として, 有限 要素解析を行った.$

①パンチモーション(しわ ②しわ抑え力負荷(パンチ 抑えなし) モーションなし)

図5 逐次成形概念図

表2 解析に使用した材料特性値

密度 /kg・m ⁻³		4. 51×10^3
縦弾性係数 /GPa		106
C value* /MPa		4500
C₀ value* /MPa		4500
C₄₅ value* /MPa		4467
C ₉₀ value∗ ∕MPa		4484
<i>n</i> value*		0.20
n ₀ value*		0.20
n ₄₅ value*		0.23
n ₉₀ value*		0.22
ランクフ ォード値	r_0	4.2
	Γ_{45}	2.5
	Γ_{90}	2.8

図 7 に前処理なしのブランクを適用した場合を想定し た解析結果として,相当塑性ひずみでモデルを表記したも のを示す.結果から、パンチ肩部に相当塑性ひずみが集中 していることが確認でき,破断発生を予測させる結果とな っている. 一方で, 図8に大気炉において 500 ℃で2時 間保持することで表面に 3000 A程度の酸化被膜を生成し たブランクを適用した場合を想定して,金型とブランクの 摩擦係数を 0.05 と設定した解析結果を示す.本解析では, 図 7 に示されるようなパンチ肩部に相当塑性ひずみが集 中することなくカップが成形されている様子が確認でき る.相当塑性ひずみはカップ壁部で集中している結果であ るが、これは、カップ壁面でしごき成形が行われているこ とが理由である.また,解析上では、ダイスとブランク間 の摩擦係数を低減していることから,逐次成形において, 金型内へのブランクの流入がスムーズに行われた結果,逐 次成形の適用により、Ti-6A1-4V合金板の冷間絞りしごき 成形達成の可能性を示唆している.

図7と図8の比較で示されるように、金型内部での材料 流入を制御するために、解析上では摩擦係数の調整で制御 し、良好な結果を得た.この理由として、金型内部でのせ ん断ひずみに着目した.図9にTi-6A1-4V合金板の冷間絞 り成形および絞りしごき成形においてパンチ肩部で破断 すると推測される解析条件、絞りしごき成形が達成できる と推測される結果について、それぞれの成形カップの横断 面におけるせん断ひずみ表記の比較を示す.なお、図9(a)

図7 無潤滑を想定した逐次成形解析結果 (相当塑性ひずみ表記,パンチストローク14mm)

図8 潤滑として酸化被膜を想定した逐次成形解析結果 (相当塑性ひずみ表記,パンチストローク28mm)

(a) 絞り加工解析結果(パンチストローク12 mm)

(b) 絞りしごき加工解析結果(無潤滑, パンチストローク 9.5 mm)

(c) 絞りしごき加工解析結果(無潤滑, パンチストローク 24 mm)

図9 逐次成形解析結果(せん断ひずみ表記)

の冷間絞り成形解析と図 9(b)の冷間絞りしごき成形解析 はそれぞれ,破断に至ったと推定される前段階の解析ステ ップでせん断ひずみを表記した. 図中から確認できるよう に、図 9(a)および(b)では、パンチ肩部とダイス肩部に接 触する個所において,図中の時計回り方向が正となるせん 断ひずみが生じていることが確認できる.一方で,絞りし ごき成形を達成できる可能性を示唆している図 9(c)の結 果では、ダイス肩部の終端、すなわちしごき成形が開始さ れる箇所に図中の反時計回り方向が正となるせん断ひず みが生じていることが確認できる.金型内部への材料流入 を円滑にすることで、絞りしごき成形が可能となると考え られる. その理由として, 解析結果のせん断ひずみの分布 から、図10の金型内部の材料流入模式図に示すように、 絞りしごきでは、しごき部における材料の流入は一定であ るが、金型内部への材料流入が増加するほど、パンチへの 接触面が増加する. そのため, パンチの変位に伴って, 局 所的に ECAP(Equal-Channel Angular Pressing)のように せん断変形が発生すると考えられる

図10絞りしごき加工における変形形態模式図

4. 冷間逐次成形による絞りしごき成形

前章において,有限要素解析により絞りしごき成形を達 成するためには,フランジ部の材料流入をモーション制御 と潤滑条件の2つのアプローチから制御することにより, 金型内部での材料流入量を円滑にすることが必要である 結果を得られた.本章では,冷間逐次絞りしごき成形を行 うために,金型内のフランジ部の摺動を補助するための潤 滑条件として PTFE (Poly Tetra Fluoro Ethylene)の適 用と成形前に 3000 Å程度の酸化被膜を生成したブランク に着目して試験を行った.

4・1 金型内の材料流入制御の効果

図 11 に PTFE を固体潤滑として適用し,常温で Ti-6Al-4V 合金板を逐次成形した結果を示す.図 11 の結 果はパンチストローク12 mm時点で試験機を停止した結果 となる.12 mm程度のパンチストロークで停止した状態に おいても,パンチ荷重-パンチストローク曲線の推移およ び成形カップから,4 mm程度のしごき部が確認できる. そのため,フランジ部の材料流入をモーション制御と潤滑 条件の2つのアプローチから制御することで,金型内部へ の材料流入を円滑にすることで,常温で Ti-6Al-4V 合金 板の絞りしごきが達成可能であることを示した.

図11 PTFEを固体潤滑として適用した冷間絞りしごき加工 結果

4・2 冷間絞りしごき成形結果

前節の結果から,本提案手法においては,ブランクの端 部からダイスの肩部までの箇所での摺動補助が必要であ る. 冷間での絞りしごきを無潤滑で達成するために,摺動 補助の効果が存在する大気酸化被膜²²⁾に着目した.大気 酸化処理の条件として成形前に 3000 Å程度の膜厚を有す る酸化処理を施したブランクを用いて常温での冷間絞り しごき成形を行った.図12 にブランクの大気酸化処理と して 500 ℃で前処理を行い,膜厚 3000 Å程度の酸化被膜 を有する Ti-6A1-4V 合金板の成形結果を示す.冷間での 絞りしごき成形に成功し,成形後のカップの肉厚分布にお いても,金型によるしごきが行われており,成形カップの 肉厚が均一となっている結果を得た.

5. まとめ

- 逐次成形の適用により、絞り成形に比べて、 Ti-6A1-4Vの冷間での成形において、最大パンチ荷 重に到達後の割れを生じることなく成形が可能で あった。
- 2) 有限要素法を適用したシミュレーションにおいて も実験と同様に、逐次成形法の適用でパンチ肩部で のひずみの集中を低減できた。

3) 開発した冷間絞りしごき成形法によって、通常肉厚 低減が顕著に生じるパンチ肩部における肉厚分布 の減少が抑制され、成形カップ全体が均一な肉厚と なる結果を実験と解析の結果から得た。

図 12 Ti-6A1-4V 合金板の冷間絞りしごき加工結果

参考文献

- Beal, D. J., Boyer, R. and Sanders, D.: ASM Handbook, 14B, Metalworking: Sheet Forming, (2006), 656-669, ASM International.
- Froes, F.H., Friedrich, H., Kiese, J. and Bergoint, D.: The Journal of The Minerals, Metals and Materials Society, 2 (2004), 40-44.

- Maeno, T., Mori, K. and Hamedon, Z. Proc. 14th Int. Conf. Met. Form., (2012), 287-290.
- 前野智美,森謙一郎,中本昌平,山下裕也,Zamzuri Hamedon:平成 23 年度塑性加工春季講演会講演論文 集,(2011),345-346.
- 5) 前野智美,森謙一郎,山下裕也:平成24年度塑性加 工春季講演会講演論文集,(2012),67-68.
- Yanagimoto, J. and Izumi, R.: J. Mater. Process. Technol., 209 (2009), 3060-3068.
- 61 回塑性加工連合講演会,
 (2010), 115-116.
- 鈴木信行,佐野利幸:平成23年度塑性加工春季講演 会講演論文集,(2011),203-204.
- 9) 鈴木信行,佐野利幸:塑性と加工,51-588 (2011), 23-27.
- 10) Kotkunde, N., Deole, D. A., Gupta, K. A., Singh, K. S. and Aditya, B.: Mater. Des., 60 (2014), 540-547.
- Singh, A.K., Kumar, A., Narasimhana, K. and Singh, R.: J. Mater. Process. Technol., 292 (2021), DOI:10.1016/j.jmatprotec.2021.117060.
- 12) Odenberger, E.-L., Oldenburg, M., Thilderkvist, P., Stoehr, T., Lechler, J. and Merklein, M.: J. Mater. Process. Technol., 211 (2011), 1324-1335.

- 13) Okude, Y., Saito, Y. and Iwaoka, T.: Proc. Manuf., 15 (2018), 931-939.
- 14) Badr, M. O., Rolfe, B., Hodgson, P. and Weiss, M.: Mater. Des., 66 (2015), 618-626.
- 15) Li, F., Mo, J., Li, J., Huang, L. and Zhou, H.: Mater. Des., 52 (2013), 337-344.
- 16) 玉井良清,山崎雄司,吉武明英,井村隆昭:塑性と加工, 51-592 (2010), 450-454.
- 17) Osakada, K., Mori, K., Altan, T. and Groche, P.: CIRP Ann., 60-2 (2011), 651-672.
- 18) 奥出裕亮, 岩岡 拓, 中村 勲: 第 69 塑性加工連合 講演会, (2018), 107-108.
- 奥出裕亮, 岩岡 拓, 中村 勲: 第135 回軽金属学会 秋季講演会講演論文集, (2018), 335-336.
- 20) 奥出裕亮, 岩岡 拓, 中村 勲, 片桐 嵩: 塑性と加 工, 60-705 (2019), 295-300.
- 21)奥出裕亮,岩岡 拓,中村 勲,片桐 嵩:塑性と加 工,61-714 (2020),159-164.
- 22) Okude, Y., Iwaoka, T. and Nakamura, I. Proc. Adv. Mat. Proc. Technol., DOI:10.1080/2374068X.2020.1793272.