レーザー照射によるアルミニウムとセラミック基板の接合

産業技術総合研究所 マルチマテリアル研究部門 主任研究員 北 憲一郎 (2018 年度 奨励研究助成(若手研究者) AF-2018233-C2)

キーワード: 接合, セラミックス, アルミニウム

1. 研究の目的と背景

スマートグリッドや省エネ型インバーター等の高効率 な電力制御技術を可能とするパワーデバイスへの需要は、 2030年以降施行予定のガソリン車新規販売禁止政策を背 景として急上昇しており、日本再興戦略(2015年改訂版) においても、2030年にはパワーデバイス市場が約3.5倍 (2015年比)まで拡大すると試算されている。

パワーデバイスにおいて金属とセラミックス基板を接 合するメタライズ技術は極めて重要であり、基板上への配 線やボンディングポイント設置等に利用される。¹現在は 良好な熱伝導性を有する金属ろう付け接合法が主流であ るが、高環境負荷なハロゲン系フラックスが必須である上 に高真空環境下にて多段工程が可能な専用装置が必要で あり、製造コストが問題となる。²⁻⁴

筆者は、有機ケイ素系ポリマーの途布と不活性雰囲気下 での加熱のみによる「アルミニウムとセラミックスの接合 技術」を開発した。セラミック繊維や薄膜の製造に利用さ れている有機ケイ素系ポリマーの熱分解時に活性なラジ カルやイオンを生成する現象に着目し、それらを金属表面 の還元・破壊および強固なボンディングに活用することに より、金属とセラミックスが接合可能となる。⁵本技術で はポリマーの塗布と加熱のみで高強度接合が可能である 上、接合層厚が最小で数ナノメートルと極めて薄く、熱伝 導率が極めて良好である。6 従来は電気炉内加熱にて上記 接合技術を実行していたが、アルミニウムとセラミックス の熱膨張係数差由来の熱応力等により、接合不良や試料の 破損が発生する問題点も有していた。ここで接合用の加熱 源をレーザーに変更可能であれば常温下にて接合が可能 であり、上記問題点の解消のみならず、基板への直接配線 描画や3次元造形等の新規製造技術への応用が見込める。

本研究の目的は、上記技術において加熱源にレーザーを 適用する為の基礎的知見の蓄積である。具体的には以下の 内容が実行可能な条件の探索および接合体(焼結体)の特 性(組成)調査である。

- ① 有機ケイ素系ポリマーをコーティングしたセラミック ス粉末とアルミニウム粉末の水系スラリー焼結
- ② セラミックブロックとアルミニウムブロックにおける
 短時間接合の試行
- ③ レーザーによるセラミック基板とアルミニウム粉末接 合の試行

2. 実験方法

2.1 有機ケイ素系ポリマーをコーティングしたセラミ ックス粉末とアルミニウム粉末の水系スラリー焼結

図1に本実験の概要を示す。平均粒径 30µm のアルミナ 粒子(WA#400、フジミインコーポレーテッド製)100g に対 し、ポリシロキサン(YR3370、モメンティブパフォーマン スジャパン製)を2.15g 加えてエタノール溶媒中に分散・ 溶解し、その後溶媒を飛ばしてアルミナ粒子表面にポリシ ロキサンのコーティングを行った。これらの重量比は、ア ルミナ粒子表面に1µm 厚のポリマーコーティングが可能 な量を算出して決定した。

このコーティング済みアルミナ粒子 82g に対して平均 粒径 25µm のアルミニウム粒子(#350M、ミナルコ製)を18g 混合し、適量の水と分散剤(OLFINE® PD-002W、日信化学工 業株式会社製)を適量混合してスラリーを作製した。この アルミナ粒子とアルミニウム粒子の重量比は、アルミナと アルミニウムの体積比が 3:1 となるように設定した。

このスラリーをプラスチック製の容器に流し込み、一晩 おいて硬化した後に容器から取り出し、大気中 150℃で4 時間加熱して十分に乾燥させた後、大気中 800、1200℃、 1600℃で1h加熱して焼結体を作製した。それら焼成後の 試料において、SEM/EDS (JEM-5600/JEM-2100,日本電子 (株)製)やXRD(RINT 2500、(株)リガク製)等による観察お よび組成分析を行った。

図1 スラリー作製および焼結方法

<u>2・2 セラミックブロックとアルミニウムブロックにお</u> ける短時間接合の試行

図 2 に試料および試料作製条件の概要を示す。まず始め に、純度 99%以上のアルミナブロックを、JIS G 0601:2012 準拠であるサイズ(55 x 25 x 21mmt)に切り出し、そのブ ロックのうち1面(55 x 25)を鏡面研磨した。次に、アル ミナブロックをポリシロキサン(KF-54、信越化学製)にデ ィッピングし、アルミナ表面に対してポリマーコーティン グした。鏡面研磨部分以外に付着した余剰なポリマーを拭 った後、鏡面研磨部分上のポリシロキサンの上に純アルミ ニウム棒(25 x 4 x 4mmt、純度 99%以上、ニラコ製)を静 置した。この試料を Ar ガスが 0.1L/min で流通する管状炉 内に静置し、管状炉中心部の温度を 700~950℃まで予熱 した後、1mm/sの速度で電気炉中央部に向けて試料を移動 させ、電気炉中央部に到達した直後に電気炉を停止し、ア ルミナとアルミニウムの接合を完了した。各温度域におい て試料を 4 つずつ作製した後、材料試験機((株)エー・ア ンド・デイ製)を用いて JIS G 0601:2012 準拠の試験を行 い、各試料の剪断強度を測定した。

<u>2·3 レーザーによるセラミック基板とアルミニウム粉</u> 末接合の試行

アルミナ板 (40 x 40 x 0.32mmt)の1面(40 x 40)を#400 番相当の砥石で研磨した。その上にトルエンで希釈したポ リシロキサン(KF-54、信越化学製)を滴下し、スピンコー ター(SC8001、(株)アイデン製)を用いて、3000rpmの速度 で 20 秒スピンコートした。そのポリシロキサンの上に、 あらかじめふるい分けして粒径 50~100µm に揃えたアル ミニウム粉末を乗せ、アルミニウム粉末の厚さが約100µm となるようにスキージした。この試料に対し、Ar ガス雰 囲気下で3次元造形装置(RaFaE1、(株)アスペクト製)内に て $C0_2$ 赤色レーザー(80W)を 1m/s のスキャン速度で、約 5x40nm の面積分を照射した。

この照射後の試料を実体顕微鏡で観察した後、接合界面 を試料断面研磨装置(IB-19530CP+IB-10500HMS、日本電子 (株)製)で研磨した後、SEM/EDS(JEM-5600/JEM-2100,日本 電子(株)製)にて観察および分析した。

3. 実験結果

<u>3・1 有機ケイ素系ポリマーをコーティングしたセラミ</u> <u>ックス粉末とアルミニウム粉末の水系スラリー焼結</u>

スラリーを800℃にて加熱したところ、試料全体が硬化 していた。従来、アルミナ粒子のみで焼結を行う場合、ア ルミナ粒子の表面拡散によるネッキング開始温度である 1200℃以上が必要だが、本研究ではそれ以下での加熱によ るネッキング形成に成功したことになる。SEM/EDS にてネ ッキング部分を観察および組成分析したところ、アルミナ 粒子表面には変化が観察されたかったものの、アルミニウ ム粒子表面には溶融が原因と考えられる皺が入り、両者の 違いは明確に観察できた(図3左上)。EDS にて接合部分を 分析したところ、アルミナ粒子とアルミニウム粒子の間に はアルミニウム、ケイ素、酸素が混合した極めて薄い層が 形成されており(図3右上)、XRD にて組成を分析したと ころ、アルミノシリケートを示唆するピークが観測された (図4)。アルミニウムとポリシロキサンを混合して加熱し た場合、600℃前後においてポリシロキサンがアルミノシ リケートに変化することが知られており、この結果は妥当 である。^{5,6}以上より、本試料では焼結体内部においてア ルミノシリケートによるネッキングが形成され、試料全体 が硬化したと推測された。

図3試料SEM像(左上、左下、右下)とEDS測定結果(右上)

スラリーを 1200℃にて加熱したところ、アルミナ粒子 間からアルミニウム由来とおぼしき物質が溢れ出ている 様子が観察された(図3左下)。ポリシロキサンコーティン グの有無によるアルミナ板と溶融アルミニウムの濡れ性 を比較したところ、コーティング有りの場合ではアルミナ とアルミニウムの濡れ性が改善されることから、「溶融し たアルミニウムが表面改質されたアルミナ粒子表面を伝 い、粒子間の隙間から溢れ出たものと推測された。

スラリーを 1600℃で加熱したところ、アルミナ粒子間 の空隙が減少している様子が観察された(図3右下)。XRD にて組成を分析したところ、アルミナの他にムライトのピ ークが多く観測された(図4)。また、スラリーの焼結前後 における体積収縮率は約1%であった。このことから、本 試料は体積収縮を殆ど伴うこと無くムライトにて粒子間 が結合した焼結体であることが示唆された。

3・2 セラミックブロックとアルミニウムブロックにお ける短時間接合の試行

700~950℃で加熱された全ての試料において、アルミニ ウム棒に変形が生じた。これは純アルミニウムの融点を超 えた温度域に暴露したためであり、短時間加熱でも純アル ミニウムに変形が起こり得ることが示唆された。

表1に平均剪断強度結果を示す。700~750℃で加熱した 場合、剪断応力強度は最大でも5MPa 未満であったが、800 ~850℃の場合で平均 5~10MPa、900℃で平均 23.8MPa、 950℃で平均 26.4MPa であり、接合時の温度が上昇するに つれて急速に上昇した。

接合温度(℃)	平均強度(MPa)	最大値 (MPa)	最小値 (MPa)
700	1.5	2.2	0.9
750	2.9	4.7	1.6
800	5.6	6.9	4.3
850	8.9	10.3	7.7
900	23.8	30.8	19.4
950	26.4	31.5	23.2

表1 接合試料の接合温度別平均剪断強度

図5にJISG0601:2012準拠における剪断試験後の試料 破断面写真を示す破断部分を観察したところ、700~750℃ ではアルミナ表面にアルミニウムの残存が少なく、アルミ ナの接合部分が露出していた(図5左)。800℃以上ではア ルミナブロックにアルミニウム層が大量に付着しており (図5中央)、900℃以上ではアルミナが抉れていた(図5 右)。このことから、700~750℃で接合した試料は接合層 であるアルミノシリケート層、800℃以上ではアルミニウ ム内部、900℃以上ではアルミナブロック内部にて破断が 発生したと考えられる。アルミニウムおよびアルミナの破 断発生箇所と加熱温度の関連性については、現在調査中で ある。

図5 試料破断面の写真

<u>3·3 レーザーによるセラミック基板とアルミニウム粉</u> <u>末接合の試行</u>

図6に照射後の試料の外観を示す。照射された部分のみ 表面が黒色化していた。この部分を実体顕微鏡で観察する と、盛り上がった銀色のドットと黒色化した帯の部分が観 測された。また、盛り上がった部分の表面は銀白色であり、 盛り上がった部分同士の狭間で黒色化していることが判 明した。基板上にはポリシロキサンをコーティングしてお り、かつアルゴン雰囲気下にて加熱されたことから、この 黒色はポリシロキサン由来と推測される。

図6 レーザー照射によるアルミナ基板上へのアルミニウ ム粒子接合の結果

図7レーザー照射にて接合したアルミニウム粒子とアル ミナ基板の断面 SEM 像(左)および EDS 分析結果(右)

この照射部分の SEM 断面像および EDS 分析結果を図 7 に示す。盛り上がった半球部分内部からは Al のみが強く 検出されたことから、この半球部分は溶融したアルミニウ ム粒子と推測された。また、アルミニウム粒子間では、厚 さ 10µm 程度のアルミニウムの強いピークのみを有する層 が観測された。用意したアルミニウムの粒径は 50µm 以上 であることから、溶融したアルミニウム粒子がアルミナ基 板表面を伝い、基板上に広がったものと推測される。この 溶融アルミニウムがアルミナ表面を伝う現象は、3.1の結 果と一致する。アルミニウム粒子とアルミナ基板の接合界 面は EDS 分析における酸素量で判別可能であり、この接合 界面においてクラック等の接合欠陥は確認されなかった。 しかし、アルミナ基板内部において、亀裂が観測された。 照射部分は瞬間的に 1000℃を超える事が知られており、 レーザーで加熱された溶融アルミニウムとアルミナ基板 における熱膨張係数差により生じた熱応力により破損し

たものと考えられ、この結果は3.2の結果と一致する。

以上より、セラミック基板にあらかじめポリシロキサン をコーティングすることにより、レーザー照射にてアルミ ニウム粒子を基板上へ接合可能であることが判明した。今 回行った照射条件では、アルミニウム粒子の形状残存や基 板内部へのクラック発生等が認められたため、使用するア ルミニウム粒子やポリシロキサン、照射するレーザーのエ ネルギー強度調整等多くの研究要素を残しており、今後の 研究課題である。

謝 辞

本研究で使用した有機ケイ素系ポリマーに関し、有益か つ多大な助言をいただきました、故・成澤雅紀准教授(大 阪府立大学、2021年1月逝去)に深く謝意を表します。

また、本研究に対し多大な援助をいただいた公益財団法 人天田財団に深く感謝の意を表します。

参考文献

- T. B. Jackson and A. V. Virkar, J. Am. Ceram. Soc., 80, 1421-1435 (1997).
- J. J. Brennan and J. A. Pask, J. Am. Ceram. Soc., 51, 569-573 (1968).
- 3. W. Köhler, Aluminium, 51, 443-447 (1975).
- M. G. Nicholas, D. A. Mortimer, L. M. Jones and R. M. Crispin, J. Mater. Sci., 25, 2679-2689 (1990).
- K. Kita and N. Kondo, J. Ceram. Soc. Jpn., 125, 846-849 (2017).
- K. Kita and N. Kondo, J. Ceram. Soc. Jpn., 125, 543-546 (2017).
- K. Kita, N. Kondo and M. Hotta, J. Mater. Eng. Perform., 29, 5594-5601 (2020).