ビームシェイピングと熱流動挙動解明に基づく 回折限界以下のLIFT 金属細線パターニング

東京工業大学 工学院 機械系 准教授 伏信 一慶 (2018 年度 一般研究開発助成 AF-2018219-B3)

キーワード: LIFT, 転写実験, 2温度モデル, 高速度可視化

1. 研究の目的と背景

LIFT (laser induced forward transfer、レーザ誘起前 方転写)は狭義には80年代に提案1)された手法とされ、特 に 2010 年代以降、急速に研究が拡大している。従来から の積層造形技術と異なり µm スケール程度以下の feature size を目指す事が可能であるため、金属細線の描画を嚆 矢としつつ、広く電子デバイス、プリンティッドエレクト ロニクスや各種センサー、樹脂材料や生体材料への期待が 広がっている。特にこの手法のメリットの一つが微細な構 造の製作にあると考えたときには、使用するレーザ光の回 折限界を超える加工線幅の実現が重要な課題である。一方 でLIFT についてはここ10年程度で急速に基礎研究が立ち 上がってきた段階でもあることから、ドナー薄膜の転写を もたらすレーザ照射後の金属薄膜の挙動が十分に理解さ れていない。特にこの現象を支配すると考えられる相変化 を伴う薄膜の熱的な挙動については全くと言って良いほ ど研究事例が見当たらない。本研究では、特にこれらの点 に焦点を置き、適切なビームシェイピングを施すことによ る回折限界を超える加工線幅の実現の可能性を探るとと もに、LIFT におけるドナーたる金属薄膜の熱的な挙動に ついて理論的・実験的な検討を行った。

2. LIFT 実験

2・1 実験装置の概要

図1に、試験部の模式図²⁾を示す。光源は中心波長1035 nmのフェムト秒レーザで、パルス幅は250 fs (FWHM)である。

レーザ光ビームシェイピングについてはこれまでの研 究成果も踏まえ様々検討を行った結果、回折限界以下の線 幅を目指すために Bessel beam の高次 lobe の影響を大き く低減できる Airy beam を用いることとした。照射光は図 中のマスクで annular beam にした後に、対物レンズによ り絞ることで Airy beam とする。得られたビーム直径は 1.3 µm (FWHM)となる。レーザ光の走査のため、ステージ を走査する。実験で用いたドナー基板には厚さ 100 nm の 金薄膜をコートしたガラス基板を用いた。基板側からの照 射により間隔をおいて設置したターゲット基板に金を転 写する。

図1 試験部模式図

2・2 結果

図2に、照射後のターゲット基板表面の代表的な SEM 画像を示す。様々な条件での実験を行っており³⁾、ここで 示す結果は、繰り返し周波数 424 kHz、ステージの走査速 度はいずれも 80 mm/s、ドナーとターゲット基板間隔は 1 µm である。また、レーザフルエンスは空間ピーク値で表 している。図2(a)の通り、条件を適切に選択することで、 線状転写が可能であることが確認でき、その線幅が概ね 300 nm 程度であることがわかった。一方で図2(b)に示す ようにフルエンスを上げるとターゲット基板上に飛散し た状態で付着している様子が見て取れる。

これらより、フルエンスなどの条件を適切に設定するこ とでビームシェイピングを施したパルスレーザ照射によ り回折限界を超える線幅の細線の転写が可能である事が わかった。実際には再加熱して溶融・凝固を行う場合に最 終的に得られる線幅についても要検討と言える。また、同 一条件下でもフルエンスを変えることで明らかに転写さ れる細線の様子が異なる事がわかる。考えられる要因とし ては適切な溶融条件を作る事で微細な金属液滴が粒状に ターゲット基板に転写される事が考えられ、さらにフルエ ンスを上げると大きなエンタルピー密度が液滴を飛散さ せる、あるいは一部で蒸発を伴う事で、噴霧状に飛散する 事が考えられる。すなわち、フルエンス等の条件による薄 膜の熱的な応答が支配要因と考えられる。

(a) 0.58 J/cm^2

(b) 0.96 J/cm²図 2 代表的な転写例の SEM 画像

3. 温度上昇の見積もり

3・1 計算の概要

レーザ照射による温度上昇が主たるドナー基板から金 薄膜を除去する要因であり、その際の理論的な見積もり方 法を入手する必要がある。そこでここではガラス基板上の 金薄膜内部の非定常温度上昇の予測を行う数値計算モデ ルを開発した^{3,4)}。

図3は計算領域の模式図を示す。図中、上側の水色の領 域がガラス基板を、下側のオレンジ色の領域が金薄膜をそ れぞれ表し、レーザ光は図の上側からガラス基板を透過し て金薄膜で吸収されると考える。金薄膜中の赤く塗られた 領域がレーザ照射による温度上昇領域を表す。なお、短時 間で進行する現象を考えるため、断熱の境界条件を用いた。

図3 計算領域の模式図

固体内部の温度上昇を求めるためには通常、熱伝導方程 式を解けば良いが、フェムト秒レーザのような極短時間の 加熱問題の場合、エネルギー伝達のプロセスにも鑑みて、 電子と格子の熱的な非平衡性を考慮できるいわゆる2温 度モデルによる定式化を行うこととする。

基礎方程式は以下の通りであり、

$$C_e(\partial T_e/\partial t) = \nabla (k_e \nabla T_e) - G \cdot (T_e - T_l) + S$$
 (1)
 $\rho_e(c_{pl} + L_m \delta_m + L_v \delta_v] (\partial T_l/\partial t)$

$$=\nabla(k_l \nabla T_l) + G \cdot (T_e - T_l)$$
⁽²⁾

それぞれ電子、格子のエネルギー式である。なお、格子温 度を求めるエネルギー式では、溶融・流動は考慮しないも のの、相変化による潜熱を考慮した式を用いる。ここで、 レーザ照射による加熱は次式で表す。

$$S = (1 - R) / \{1 - \exp(-\alpha d_{gold})\}$$

$$\cdot 2\{4(\ln 2) / \pi\}^{0.5} (\alpha F / t_p)$$

$$\exp\{-(r / r_0)^2 - \alpha z - 4(\ln 2)(t / t_p)^2\}$$
(3)

3·2 計算結果

図4はシングルショットでの非定常温度上昇の計算結 果である。図に示す通り、極短時間でのエネルギー投入と 熱容量の小ささを反映して電子温度は急激な上昇を示し たのちに低下し、格子温度と平行に達している。一方、格 子温度は照射から数 ps 程度の遅れをもって上昇し、一定 値へと漸近し、電子温度と平行に達していく様子が見て取 れる。パルス幅は 250 fs であるが、格子温度の上昇は数 ps 程度の遅れをもって立ち上がる様子がわかり、今回の ように温度上昇起因の材料挙動を考える上での2温度モ デルの重要性が理解できる。また、今回の条件で概ね材料 が蒸発する温度に達していることもわかる。

(b) 2.5 J/cm²図 4 電子・格子温度計算例

非定常の温度上昇は金薄膜内に温度分布を生じながら の現象であることが図5からわかる。この時間領域では全 体として電子温度は上昇し、格子温度は低下する。また、 図5(a)と(b)から、電子、格子温度ともに照射後2psでは まず照射側の温度が高いものの、40ps後の図5(c)と(d) では断熱の境界条件で模した空気と接する側の温度が高 くなる傾向がわかる。

図5 対称軸上での薄膜内厚さ方向温度分布((a) *T*_e at 2 ps, (b) *T*₁ at 2 ps, (c) *T*_e at 40 ps, (d) *T*₁ at 40 ps)

一方今回のモデルでは電子のバリスティック輸送の効 果を取り入れている。図6はその効果を取り入れなかった 場合との比較を示したものであり、図から明らかなように、 バリスティック輸送を考慮することで電子、格子温度分布 の平坦化がもたらされている。計算結果より、現象として は、薄膜全域でほぼ均一に温度が上がり相変化をもたらす 事が考えられる。

図6 電子のバリスティック輸送(EBT)の効果(左上: Te, EBT 無し、右上: Te, EBT 有り、左下: Tl, EBT 無し、 右下: Tl, EBT 有り)

図7に薄膜内の格子温度分布を示す。図のように比較的 一様な温度分布が得られ、全域で相変化を生じて転写が生 じる事が考えられる。

図7 薄膜内格子温度分布 (*t* = 40 ps、(a) 0.96 J/cm²、 (b) 2.5 J/cm²)

4.理論計算の検証

4・1 実験の概要

理論計算はシングルショットの結果であり、これとの比較のためにシングルショットにより LIFT の閾値を求めるための実験を行った。

図8に実験装置を示す。実験で用いたレーザは波長 532 nmのNd:YAG レーザでパルス幅 5.5 ns、ハイスピードビ デオカメラは 220,472 fps である。また、観察のためドナ ー基板とターゲット基板の間隔は1 mm とした。

図8 実験装置の模式図

4·2 実験結果

図9は金薄膜をドナー基板側から除去できた確率(除去 できた回数/照射回数)のプロットであり、これを LIFT 確率と呼ぶ。照射回数は各条件に対していずれも10回で ある。また、フルエンスはここでもピーク値で整理した。 図のように、概ね 1.2 J/cm²付近で LIFT 確率が 0%でな くなり、1.3 J/cm²付近以上では 100%となった。また、 今回の実験条件では1.6 J/cm²以下では一つの粒子状で放 出されるのに対して、2.5 J/cm²以上の2条件においては スプレー状に飛散する様子が確認された。

図9 LIFT 確率の実験結果

図10と図11はこの時のハイスピードビデオカメラ の画像を示したものであり、各フレームは上記フレームレ ートに照らして概ね 4.5 µm 間隔で撮影したものである。 図10の通り、1.51 J/cm²では粒子状の物質が飛翔する様 子が観察される一方で、図11に示すように 2.48 J/cm² では飛散した噴霧状の物質が frame #3 以降、ターゲット 基板上で流動する様子が観察された。これらの結果は数値 計算で予測された溶融、蒸発の閾値を与えるフルエンスと も整合するものであり、溶融・蒸発の間のフルエンスで粒 子状物質の飛翔が始まり、蒸発の閾値に近づくことで噴霧 状の物質飛散が確認される。計算と実験でパルス幅が異な るが、実験の方がパルス幅が長いことを考えると、より大 きなフルエンスを要すると考えられることから、結果の整 合性については合理的と言える。今後、照射後の物質の熱 流動状況をより精緻に解析することで、より正確にこれら の閾値の決定ができるものと考える。

(c) frame #3

図10 可視化画像(1.51 J/cm²)

5. 結言

ビームシェイピングを適切に施すことで回折限界以下 の線幅の LIFT を実現できることを確認した。また、その 際の現象解明には、とりわけ今回の条件においてはパルス 幅数 ps 以下の超短パルスレーザを用いる場合には2温度 モデルによる理論解析が格子温度の非定常応答をより正 確に表現できることを示した。さらにシングルショットに よる実験と計算との比較で、相変化を考慮した計算で現象 の閾値の領域について整合性のある結果を得る事ができ た。

参考文献

- J. Bohandy, B. F. Kim, and F. J. Adrian, Metal deposition from a supported metal film using an excimer laser, J. Appl. Phys., vol. 60, pp. 1538, 1986
- 2) 渡邉;修士論文,東京工業大学理工学研究科,2019
- 3) B Kim, H. K. Nam, S. Watanabe, S. Park, Y. Kim, Y-J. Kim, K. Fushinobu, S.-W. Kim, Selective Laser Ablation of Metal Thin Films Using Ultrashort Pulses, Int. J. of Precis. Eng. And Manuf.-Green Tech., DOI 10.1007/s40684-020-00272, 2020
- S. Watanabe, B Kim, S.-W. Kim, K. Fushinobu, Two-temperature modeling of the thermal response of gold thin film under femtosecond laser irradiation, Proc. ThermaComp2020 (meeting postponed due to the covid-19)
- K. Fushinobu, Key roles of thermal engineering in photonic subtractive/additive manufacturing, 2nd ACTS -Asian Conference on Thermal Sciences 2020, Oct. 3-7, 2020, online (Keynote lecture)