単結晶ダイヤモンド製圧子を用いた超音波援用マイクロ プレス加工によるマイクロレンズアレイ金型の超精密成形

中部大学 工学部 機械工学科 教授 鈴木 浩文 (2018 年度 一般研究開発助成 AF-2018032-B3)

キーワード:インデンテーション,超音波振動,単結晶ダイヤモンド圧子,マイクロアレイ金型,超精密成形

1. 研究の目的と背景

近年,様々な領域で超精密・微細テキスチャリングの需要が増大している^{1),2)}.その例を以下に示す.

- (a) 光学系レンズの成形型 回折レンズ,赤外レンズ等の車載センサ,内視カメラ,マイクロカプセル等の医療デバイス等において,素子の形状のテキスチャリング化,ガラス化,マイクロ化,高精度化が求められ,量産成形のため「テキスチャリング成形型の超精密微細加工」が不可欠である.
- (b) 歯科用 Ti インプラント 生体細胞と適合性が優れ るチタン (Ti) は既に人工骨にも用いられ,最近の研究 では歯科 Ti インプラント表面に 10µm 幅程度の微細溝を 設けると生体融合性が高まるとの報告がある. Ti は難 削材であり微細加工が困難である.
- (c)表示デバイス用反射防止機能表面 スマートフォン,液晶パネルや車載表示パネルに,光の波長レベルの 段差の微細なパターンを創成することにより,表示パネルの反射光を防止する効果が付加できる.

図1 レーザ光による単結晶ダイヤモンド製圧子の マイクロ加工と超音波援用インデンテーション

図2 超音波援用インデンテーションの効果

その他, 撥水性の向上, 光の吸収率の向上, 汚れの付着 の防止機能などが有るが割愛する. このように様々なテキ スチャリングの付加の効果があるが, 多くは量産成形する ため, 高精度・高能率のテキスチャリングがキー技術とな っている.

従来は「切削加工」などの機械的除去加工で実施される が, 効率が悪い, 量産性が劣るなど実用化に大きな問題が 有る^{2),3),4)}.一方,本提案の「超音波振動援用ナノインデ ンテーションによる微細形状の高精度テキスチャリング| では,図1に示すようにレーザファブリケーションプロセ ス^{5),6)}で単結晶ダイヤモンド製圧子を創成し,超音波振動 を援用しながらインデンテーション(圧入)を行うため. 図2 に示すように小さな押込み荷重で金属やアモルファ ス材料の微細形状の高精度・高能率転写加工が可能である ことが予備実験の結果から明らかとなっている. 単純な圧 子による押込み加工では微細形状の高精度高能率加工が 困難であるが、それに反して、(1)なぜ超音波を付加する ことにより高硬度材料においても低圧力で材料の塑性流 動が生じるのか、(2) 高精度・高能率転写加工ができるの かを、 塑性流動解析、 実験的検証により、 明らかにするこ とを本研究の目的として実験を実施した.

2. 実験装置および方法

2・1 超音波振動援用ナノインデンテーション装置

開発した超音波振動援用ナノインデンテーション装置 を図3に示す.ランジュバン型の圧電素子を用いて超音波 振動を創成する.縦方向の超音波振動の振幅はホーンによ り増大し,先端のダイヤモンド圧子に伝達する構造となっ ている.

超音波振動システムを開発するにあたり,図 3(b)に示 すように ANSYS を用いて超音波振動解析を行い,システム と最適な 振動ホーンの形状を設計した^{7),8),9)}. 3 軸制御 NC 駆動装置(芝浦機械㈱製 UVM350B)に圧電素子型の超音 波振動装置を取付け,単結晶ダイヤモンド圧子はコレット チャックを介して超音波装置に取付けた.また,プレス力 測定のため,金型・ワークジグを動力計(キスラー製)に 取り付け,押し付け荷重,圧子の位置を制御するシステム を構築した.超音波振動装置の振動数は 39kHz,振幅は 2 ~6.2μm となるようにした.駆動テーブルは X, Y, Z 軸同 時制御で,位置決め精度は 10nm である.

(a) 超音波振動装置の概略図(b) 超音波振動解析図3 開発した超音波援用インデンテーションシステム

図4 開発した超音波援用インデンテーション装置

2・2 単結晶ダイヤモンド製の圧子の試作

単結晶ダイヤモンド製の圧子は図 1 のレーザファブリ ケーションシステムにより試作した.レーザ光を走査し自 由曲面を創成することができる.使用したレーザは IR YV04 (λ =1.064 μ m)を用いた.試作した2種類の単結晶 ダイヤモンド製の圧子の SEM 写真を図 5 に示す. 先端が 90 度の四角錐形状と,曲率半径 100 μ m の円錐形状の圧子 を試作した.

(a) 四角錐(90 度)
(b) 円錐(先端100 μm R)
図 5 試作した単結晶ダイヤモンド製の圧子

2·3 実験方法

インデンテーション実験の条件を表1に示す. 超音波振動装置の振動数は39kHz,振幅は2~6.2µmとなるようにした.駆動テーブルはX,Y,Z軸同時制御で,位置決め精度は10nmである.押し込み量は5-80µmとし,インデンテータの動きとインデンテーション時間は超精密機械のNCシステムにより制御した.工作物は、6-4黄銅,無酸素銅,無電解Ni-Pを用いて実験した.インデンテーション 荷重はキスラー社の動力計によりインプロセスで計測した.インデンテーション加工はドライでも可能であるが、 ダイヤモンド圧子の摩耗と破損を防止するため、白灯油を掛けながら潤滑して加工を行った.

表 1	実験条件

工具	単結晶ダイ	ヤモンド		
形状	四角錐		円錐	
先端形状	90 度		0.1 mm R	
超音波装置	ピエゾ素子			
振動数	39 kHz			
振幅	0, 2.0 - 6.2 μm			
工作物	6-4 銅	無酸素銅	無電解 Ni-P	
硬度	HV 153	HV 100	HV 565	
押込み深さ	5, 10, 20, 40, 80 μm			
送り速度	100 mm/min			
押し込み時間	0.1, 0.2, 0.4, 0.8, 1.6 s			
クーラント	白灯油			

3. 研究成果

3・1 超音波援用インデンテーションの基礎的特性の評価 はじめに, 超音波援用インデンテーションの基礎的特性 を把握するために, 無電解 Ni-P, 無酸素銅, 6-4 黄銅を材 料に対して, インデンテーション荷重, インデンテーショ ン深さを変化させて特性を評価した. 3 種類の材料に対し て, インデンテーション深さが 10 µm, 40 µm において, 超音波振動の振幅を変化させて時の荷重の変化を図 6 に 示す. 硬度の高い材料ほどインデンテーション荷重が大き く, 振幅が大きいほど荷重が小さくなっていることがわか る.

(a) 押込み深さ、d=10 μm
(b) 押込み深さ、d=40 μm
図 6 超音波振動の振幅に対する荷重の変化
(無電解 Ni-P, 無酸素銅, 6-4 黄銅)

次に,無電解 Ni-P, 無酸素銅, 6-4 黄銅を材料に対して, インデンテーション荷重, インデンテーション深さを変化 させて特性を評価した.3種類の材料に対して, インデン テーション深さの変化によるインデンテーション荷重の 変化を図7に示す.超音波振動の振幅が大きいほど変形に 必要な荷重が小さくなっていることがわかる.

図7 超音波振動のインデンテーション深さに対する 荷重の変化

また,設定したインデンテーション深さに対する実際の 加工深さの変化を図8に示す.いずれの超音波振動の振幅 においても設定深さ通りの加工が行われている.

図8 インデンテーション深さに対する加工深さの変化

次に, 圧子に対するインデンテーションの転写性を検討 した.90 度の四角錐のインデンテータを用いて,視聴音 波振動の振幅に対する転写性を評価した結果を図9に示 す.単結晶ダイヤモンド製の圧子およびインデンテーショ ンを行って加工した金型の形状は先端半径が2μmの接触 式形状測定機UA3Pを用いて計測した.超音波振動の振幅 が大きいほど転写性が優れていることがわかる.無電解 Ni-P は最も硬度が高いが,転写性は比較的良好であっ た.比較的硬度が低い黄銅が最も悪かった.

(c)超音波振動の振幅に対する転写性の評価 図9 超音波振動の振幅に対する加工の転写性

3・2 超音波援用インデンテーションによるアレイ金型の 試作実験および成形実験結果の評価

最後に、四角錐および球形状の無電解 Ni-P 製アレイ金型を圧子により超音波援用インデンテーションを行った。インデンテーション後に金型はバリを除去するために、平面切削を行った。四角錐の圧子を用いて加工したアレイ金型を図 10(a)に、このアレイ金型でアクリル樹脂に加圧圧縮成形した成形品図 10(b)に示す。金型の断面と成形品の断面も上に示した.また、金型と成形品の断面を重ねて表示した図を 10(c)に示す。エッジ先端も転写され、良好に成形できていることがわかる。同様に、球形状の圧子を用いて加工したアレイ金型を図 11(a)に、このアレイ金型でアクリル樹脂に加圧圧縮成形した成形品図 11(b)

に示す.金型と成形品の断面を重ねて表示した図を図 11(c)に示す.エッジ先端も転写され,良好に成形できて いることがわかる.

4. 結 言

本研究では、高能率加工を行うために変形加工である 「ナノインデンテーション」に着目し、レーザ加工を応用 した単結晶ダイヤモンド等のマイクロインデンテータ(圧 子)を創成し、超音波振動援用のナノインデンテーション システムを開発し、超音波振動を付加することによる無電 解 Ni-P などのアモルファス金属材料の高精度・高能率塑 性変形特性を明らかにし、微細で構造的な超精密形状の創 成の高精度・高能率加工を実現することを検討した.その 結果、無酸素銅、黄銅、無電解 Ni-P などの精密金型材料 に対して、高精度で高能率に微細加工できることが示され た.

謝 辞

本研究は、科学研究費補助金 基盤研究 (B) 20H02486, 公 益 財 団 法 人 天 田 財 団 一 般 研 究 開 発 助 成 (AF-2018032-B3),中部大学生産技術開発センターの助成 により行われた.関係各位に謝意を表します.

参考文献

- Yoshioka H, Kojima K, Toyota D (2020) Micro Patterning Curved Surface with a Fast Tool Servo System for Micro Milling Process: CIRP Annals -Manufacturing Technology 69(1): 325-328.
- Brinksmeier E, Riemer O, Gessenharter A, Autschbach L (2004) Polishing of Structured Molds: CIRP Annals - Manufacturing Technology 53(1):247-250.
- Suzuki H, Okada M, Yamagata Y, Morita S, Higuchi T (2012) Precision Grinding of Structured Ceramic Molds by Diamond Wheel Trued with Alloy Metal: CIRP Annals - Manufacturing Technology 61(1): 283-286.

- 4) Suzuki H, Okada M, Lin W, Morita S, Yamagata Y, Hanada H, Araki H, Kashima S (2014) Fine Finishing of Ground DOE Lens of Synthetic Silica by Magnetic Field-Assisted Polishing: CIRP Annals -Manufacturing Technology 63(1): 313-316.
- 5) Suzuki H, Okada M, Fujii K, Matsui S, Yamagata Y (2013) Development of Micro Milling Tool Made of Single Crystalline Diamond for Ceramic Cutting: CIRP Annals - Manufacturing Technology 62(1): 59-62.
- Suzuki H, Okada M, Asai W, Sumiya H, Harano K, Yamagata Y, Miura K (2017) Micro Milling Tool Made of Nano-Polycrystalline Diamond for Precision Cutting of SiC: CIRP Annals - Manufacturing Technology 66 (1) 93-96.
- 7) Abdullah A, Paknejad M, Dashti S, Pak A, M Beigi A (2014) Theoretical and Experimental Analyses of Ultrasonic-Assisted Indentation Forming of Tube: Proceeding of the Institution of Mechanical Engineers, Part B: Jornal of Engineering Manufacture 228(3): 388-398.
- Michalski M, Lechner M, Gruber L, Merklein M (2018) Influence of vibration on the shear formability of metallic materials: CIRP Annals -Manufacturing Technology 67(1): 277-280.
- 9) Suzuki H, Hamada S, Okino T, Kondo M, Yamagata Y, Higuchi T (2010) Ultraprecision Finishing of Micro-Aspheric Surface by Ultrasonic Two-Axis Vibration Assisted Polishing: CIRP Annals -Manufacturing Technology 59(1): 347-350.