通電加熱法による CFRP プレートの圧延加工及び圧延接合技術の開発

岡山大学 学術研究院自然科学学域 教授 岡安 光博 (2018年度 一般研究開発助成 AF-2018028-B3)

キーワード: CFRP,加熱,プレス

研究の目的と背景

本研究の目的は、通電加熱を用いて CFRTP(Carbon fiber reinforced thermoplastics, 炭素繊維強化熱可塑性プラスチ ック)板の加熱を実現し、さらに加熱で軟化した CFRTP を ホットスタンピングで曲げ成形加工する技術の開発であ る. 融点まで加熱すると軟化または溶融する樹脂(熱可塑 性樹脂)を母材とした CFRTP を供試材として使用した.

2. 実験方法

2.1 供試材

図1に本研究で使用した CFRTP 板の外観写真を示す. この CFRTP は炭素繊維(CF)シート,東レ製トレカクロス CO6343B とポリプロピレン(PP)樹脂で構成されている. CF シートは繊維束が平織されて布状を呈している. 図 2 に示すように、平織とは経糸と緯糸が交差させる織り方で ある.このシートが4枚積層されたものに樹脂を含浸して 作製した.厚さは約1mmとした.

図 1 CFRTP の外観写真

2・2 実験装置の概要

図3に作製した通電加熱(Electric resistance heating, ERH) 装置を示す.図4に示すように、通電加熱装置の試験片押 さえをエアシリンダで動作させ、電極と試験片押さえとの 間に CFRTP 試験片を挟んで固定した.ただし、試験片中 のCFと電極が接触する必要があるため、電極と接触する 箇所を研削することで CF を露出させた.研削加工につい ての詳細は次節で述べる. 試験片の固定条件として, 試験 片が電極と接触する面積を片側 80 mm²,エアシリンダ圧 0.4 MPa とした. 高周波熱錬株式会社製の急速加熱試験設 備を電源として通電加熱装置に接続し,電極間に電流を流 した.この通電により試験片を加熱した.加熱温度は、電 気抵抗値,電流値,通電時間で調節した.

図3 通電加熱装置(ERH)

図4CFRTP サンプルの電極セット

2・3 研削加工

図5にCFRTP 試験片の断面のSEM 画像を示す.CFRTP 試験片の表面は樹脂で覆われているために絶縁されてい る. 通電による加熱を可能にするべく, 通電加熱装置の電 極に接触する箇所を研削することで CF を露出させた.研 削には岡本工作機械製作所製の平面研削盤を用いた.図6 に研削した試験片の外観写真を示す. 平織された CF を用 いた材料であるため、CF が露出する面積は研削する深さ により異なる.本研究の供試材の場合,研削深さが約0.15 mmのときに CF 露出面積が最大であった. 図7に試験片 断面の概略図を示し,図中に最大研削深さの位置を赤線で 示す.

2·4 電気抵抗測定

試験片の両端を研削することで通電加熱を可能として いる.しかし、電極と接触している CF と PP の面積比や 表面粗さによって,通電時の温度上昇に差異を生じること が考えられる.そこで,研削深さの異なる試験片を作製し, 通電加熱装置の電極に取付け,電極間の電気抵抗を測定し た. 測定にはMastech 社製マルチテスタ MAS838を用いた. 試験片の大きさは長さ L = 50 mm, 幅 W = 10 mm とした.

ここでは、研削面積当たりの CF の露出面積の割合(CF 露出割合, CF-exposed-ratio) を評価パラメータとした.こ の露出面積は、画像処理・解析ソフトウェア Image Jを用 いて測定した.図8に研削した表面写真および CF と PP の境界を判別した後の図を示す. CF が露出している箇所 を黄色い円で囲んでいる.

図8 研磨後の CFRTP 表面

2·5 温度測定

CFRTP 試験片に通電したときの温度変化および温度分 布を調査するため,熱電対およびサーモグラフィによる温 度測定を実施した.本実験には長さ L = 50 mm および 140 mm の 2 種類の試験片を使用した.図9に,L = 50 mm お よび 140 mm の試験片において熱電対を取り付けた位置を 示す.耐熱テープを用いて試験片に熱電対を接触させた. 表1に温度測定時の加熱条件を示す.熱電対を取り付けた 試験片を表1の条件で加熱し,このときの試験片温度を測 定した.熱電対による温度測定と同時にアピステ社製サー モグラフィを用いて温度分布を測定した.

表1 実験条件

	Sample length, mm	Electric current.	Heating time, s.
	50	Rise from 0 A at 0.4 A/s .	10
	50	2 A -	10,20,30
	50	2 A -	10, 20-
ļ	140.0	4 A .	10, 20, 30, 60.

CFRTP 試験片を通電加熱したのち, プレス機によって 曲げ成形加工を実施した.加工にはアイダエンジニアリン グ製 60ton クランクプレス機を使用した.また,図10に 示すハット形状の金型を用いた.上型と下型のクリアラン ス1 mm とした.図11に示すように曲げ角度は4箇所す べて110°, コーナーRは2 mm とした.ハット曲げの曲げ 箇所の外側をコーナーA, 内側をコーナーBとした.

図 10 プレス金型: (a)上金型, (b)下金型

図11 金型の窪み形状

クランクプレス機のボルスタ上に通電加熱装置を据え た.図12および図13(1)に示すように通電加熱装置の電極 間に金型をセットして,通電加熱終了後ただちに成形に移 行できるようにした.試験片を図13(2)に示すように固定 し,通電加熱を実施する(図13(3)). CFRTP板が十分加熱さ れた後,プレス成型を実施した(図13(4)).

表 2 にプレス成形時の試料中央の推定温度およびクラ ンク下死点での保持時間の条件を示す.サンプル温度は, 室温, 110℃, 150℃(融点近傍),融 210℃(融点以上)と した.

図12 金型にセットした通電加熱装置

2・6 スプリングバック量測定

加熱温度,下死点での保持時間によるスプリングバック 量を確認するため,プレス曲げ成形した試験片のコーナー A, B の角度をプロトラクタで測定した.測定した角度と 理想的な角度(110°)の差を算出し,スプリングバック量を 評価した.

3 実験結果および考察

3・1 通電による CFRTP 板の発熱温度特性

図14にCFRTP試験片(*L*=50 mm)の電気抵抗測定結果を示す.黒三角が通電前,赤丸が通電後に測定したプロットである.CF露出割合が約20–70%の範囲では,CF露出割合の増加により電気抵抗が急激に低下している.一方,70%以上ではCF露出割合の増加に伴ってわずかに上昇している.

図14 電気抵抗値と炭素繊維の露出率

電気抵抗がわずかに増加した理由について考察する.図 15 に露出率が 30%,50%,90%の CFRTP 材の研削後の SEM 画像を示す. CF は平織されているためにうねって いる. 露出した CF の向きは観察箇所によって異なる. 図 15 (c, g, k)では CF が研削面に対して平行の向きにあるた め, CF の破断が少ない. 一方, 図 15 (b, d, f, h, j, l)では CF が研削面に対して平行でなく, 破断を多く確認できた. 特に CF 露出割合 90%では, CF の破断が多く確認できた. また,研削率が高いほど,削り深さが大きくなるため, 試 験の厚さが薄くなる. これらより,抵抗値の増加が考えら れる.

図 15 露出率の異なる CFRTP のサンプル表面

図 16 に L = 50 mm の試験片を通電加熱したときの試 験片中央の温度変化を示す. 通電加熱開始時の電流 0 A か ら 4A で増大させ, 10 s 間加熱したときの温度を測定した. また,図 17 に最高温度と CF 露出割合の関係を示す.ま ず,図 16 の結果から CFRTP においても通電加熱が可能 であるといえる.また,CFRTP は低電流でも溶融に十分 な温度まで加熱が可能である. CF 露出割合が高い場合に温度上昇が緩やかであった. CF 露出割合 57%の試験片の最高温度が最も高く,続いて 67%の試験片が高かった.これより,CF 露出割合が約 60% のときに,最も温度が上昇すると考えられる.図 18 に 2 秒毎のサーモグラフィ画像を示す.黄色の破線で囲まれた 領域が試験片の温度分布である.CF 露出割合と通電時間 による温度上昇の差異が確認できる.CF 露出割合 52%の サンプルが最も温度が高くなっている.また,通電時間の 増加により,サンプル温度が上昇している.

図 16 露出率の異なる CFRTP の通電加熱による温度曲線

図 17 露出率の異なる CFRTP の最大加熱温度

図 18 CFRTP の温度分部 (サンプル長さ 50mm)

さらに図18より CFRTP 全体で加熱されているが, 電極 と CFRTP の接触部で強く発熱していることが確認できる. これは接触部の抵抗が影響していると考えられる.

図 19 に通電の電流値及び通電時間を変化させたときの 試験片中央部の温度変化を示す (*L* = 50 mm).電流は 2A および 4A とし,通電時間は 10, 20, 30 秒とした.なお試 験では CF 露出率が 20-50%のサンプルを使用した.電流 が大きくなると急速に加熱されている.また,通電時間が 長くなるほど最高温度は高くなっている.これより,定電 流電源を用いた場合,電流値及び加熱時間などによって加 熱温度を調整できると考える.

図 19 CFRTP の電流と加熱温度の関係

3・2 曲げ加工性評価

CFRTP の曲げ成形加工を実施するにあたり,サンプル 長さ L = 140 mm の試験片を用いて通電加熱条件を検討 した.電流を4A-定として,通電時間を10,20,30,60 秒で変化させた.図20に得られた試験片中央の温度変化 を示す.図19の結果と同様に通電時間を長くするほど温 度が上昇している.図21は、電流4Aで30s通電加熱し たときのサーモグラフィによる温度分布である.ここでは 熱電対の設置有無による影響について確認した.図より加 熱時間の増加により温度は上昇しており,比較的均一な温 度分布が確認できる.またわずかに熱電対設置周辺のサン プル温度が低下している.これは、熱電対に熱の流出した ことが影響していると考える.

図 20 通電加熱による CFRTP の温度曲線

図 21 CFRTP 板の通電加熱による温度分布(電流 4 A)

図 22 ホットスタンピングした CFRTP 板

3・1 節にて CF 露出割合による加熱温度への影響を示 した.プレス曲げ成形時には CF 露出割合による加熱温度 のばらつきを抑えるため, CF 露出割合を 20-50%に設定 した.図 22 に曲げ成形後の試験片の外観写真を示す.図 11 の形状に近いほど成形性が高いサンプルといえる.ま ず成形温度 150°C で,最も成形性が高かった.ただし完全 に対称形状にすることはできなかった.これは高温により 樹脂が軟化したことが原因と考えられる.一方,加熱時間 が高い 210°C (保持時間 0 s)のとき,成形性が最も低か った.この理由は,図 23 に示すように,加熱時に樹脂が 溶融し,曲げ成形が困難であったと予想できる.また溶融 した樹脂が金型に融着し,形状を安定にすることが出来な かったと考える.一方,低い温度(110°C 以下)条件では, 材料の軟化が不十分であったため,塑性変形が強く起こら なかったと考える.

図 24 に各保持時間におけるスプリングバック量と成形 温度の関係を示す.図11に示したコーナーA,Bごとにス プリングバック量を示している.融点以下である110℃以 下で成形した際にも下死点で保持することでわずかに成 形性が良好となった.下死点で保持することでプレス荷重 が試験片に長時間負荷されるためと考える.150℃で成形 した際にはさらに下死点での保持時間によって成形性が 向上している.下死点で保持することによって,軟化した 樹脂が金型の形状を転写したまま十分に冷却され,その形 状を維持できている.これによりスプリングバック量の小 さい形状に成形できたと考える.

図 23 CFRTP 板のホットスタンピング時の金型への接着

図 25 に CFRTP 試験片断面の SEM 画像を示す. ここで は試験片の成形性を確認するため、コーナーA, B の箇所 を観察した.特に 210°C, 5 秒で加熱した試験片のコーナー は滑らかな曲線形状を示しており,成形精度が高くなって いる. CF が曲線に沿って成形されていることが確認できる.しかし、それ以外の多くの試験片においてはコーナーでしわや不均一な形状で構成されており、成形精度が低い. 平織された CF は複雑な変形をするため、さらなる調査が 必要である.

図 25 CFRTP のプレス後の形状

4 まとめ

ポリプロピレン(PP)を母材とした CFRTP を用いた. CFRTP の通電加熱性を調査した.また,通電加熱を利用 した曲げ成形加工を実施したところ,以下に示す結果が得 られた.

- 1. CFRTPの通電加熱は可能であった.しかし, CFRTP と電極との接触面状態によって加熱温度によって品 質の差が生じた.
- 金属の通電加熱と異なり、低電流の通電であっても 樹脂の溶融に十分な温度まで加熱が可能であった. 電流値や通電時間により加熱温度を調整できた.
- 3. 通電加熱を利用した CFRTP の曲げ加工は可能であ った. プレス機と通電加熱用の電極を一体化するこ とで,加熱から成形に至るまでの時間の短縮が実現 できた.
- 樹脂の融点以上に加熱して成形し、プレス下死点で 長時間保持したとき、最も成形精度が高いプレスサ ンプルを作製できた.

謝 辞

本研究に対し公益財団法人天田財団より2018年度一般 研究開発助成を受けた.深い感謝を申し上げます.本研究 により,国際学術雑誌に論文を掲載することができました.

研究成果

Mitsuhiro Okayasu, Masaya Sato, Hot-stamping technology for carbon fiber reinforced thermoplastic plates based on electrical resistance heating, Journal of composite materials, Volume 54, 2020, pp.1353-1361.