福井大学 産学官連携本部特命准教授 山根 正睦(平成 29 年度 重点研究開発助成 B 課題研究 AF-2017003)

キーワード:熱可塑性 CFRP,急速加熱冷却(H&C)成形,金属積層造形

研究の目的と背景

熱可塑性 CFRP の代表的な成形方法は、板状の成形材 料を赤外線ヒータ等で加熱溶融し、マトリックスである 熱可塑性樹脂の融点より低い温度の金型に投入してプレ ス成形を行うスタンピング成形である(図1).成形サイ クルが1分程度であることから、大量生産に適しており、 強度・弾性率・耐衝撃性に優れた成形品が得られるため、 自動車の軽量化技術として注目されている.しかしなが ら、高い成形圧力(15~30 MPa)が必要であるため、自動 車のボンネット程度の大きさの成形品でも、出力が 2000 ~3000トンの大型プレス機が必要であり、このクラスの 大型プレス機(複合材料の成形は油圧プレス機)を所有 する成形メーカーは非常に少ない.大型プレス機を新た に導入するには巨額な設備投資となり、中小企業が多い 成形業界においてサプライチェーンを拡大することは困 難である¹⁾.

図1. スタンピング成形の概念図

従って,熱可塑性 CFRP の用途拡大のためには,大型 プレス機を必要としない低圧で成形可能な成形システム の開発が望まれる.低圧で熱可塑性 CFRP を成形するた めには,板状の成形材料を使用せず,プリプレグから直 接成形品を製造する方法がある.航空機業界においては, 従来の熱硬化性 CFRP と同様に成形型の上に熱可塑性 CFRP のプリプレグを積層し,オートクレーブ成形によっ て製造されている.その成形圧力はスタンピング成形に 比較して低い圧力(2 MPa 程度)である.しかし,オート クレーブ成形は成形サイクルが極めて長く(一般的には 8時間),一般産業用途には適用出来ない.

プレス成形において熱可塑性プリプレグから直接成形 品を得るためには、金型温度を熱可塑性樹脂の融点以上 の温度に昇温し、成形後、脱型できる温度にまで冷却す る必要がある.熱可塑性 CFRP を広く一般産業用途に展 開するためには、成形サイクルの観点から金型の急速加 熱冷却(H&C)技術が必要であるが、金型全体を熱可塑性 樹脂の融点以上まで急速加熱した後,急速冷却可能であり,かつ,複雑形状にも対応出来るH&C技術は,現状では開発されていない.

本研究では、熱可塑性 CFRP を普及させるための大き な課題である低コスト化を目的とし、金型の H&C 技術に より板状材料への加工工程を省き、熱可塑性プリプレグ からダイレクトに成形品を製造する成形プロセスを開発 する.

2. 金型の H&C 技術の基礎検討

従来の金型構造は、ヒータあるいは熱媒体を通す配管 を内蔵した構造となっている.この構造では金型の熱容 量が大きいため、急速加熱冷却を行うことは原理的に困 難である.また、プレス成形用の金型は雄雌の嵌合型で あるために、複雑な形状や深い形状の成形面の近傍にヒ ータや配管を設置するには、加工が煩雑になり金型コス トの上昇を招く.この問題を解決するために、金型の熱 容量を小さくできるシェル構造の金型を検討した(図2). 金型をシェル構造にするための方策として、近年その発 展がめざましい金属積層造形(金属 AM)に着目した.ま た、熱可塑性 CFRP に使用される樹脂には、成形温度が 400℃を超えるものもあることを考慮し、現存する熱媒体 の中でも極めて高温であり、かつ、クリーンな熱媒体と して過熱水蒸気を選定した.

図 2. 金型構造の比較

2.1 シェル構造の着想

金属 AM では造形物をサポートで支え,最終的にサポ ートは除去される.そのため,サポートの形状は単純な 構造であり,除去しやすい肉厚で造形されることが多い.

図 3. シェル構造のヒントとなった金属造形物 (松浦機械製作所製 LUMEX Avance-25 により造形)

しかし、金型の成形面を形成し、シェル構造にするため には、成形面であるシェルを支え、様々な方向からの成 形圧力に耐え得るサポートの構造を検討する必要がある. そこで、建築物等で多用されているラティス構造に着目 した²⁾. 金型の基本構造のイメージを図4に示す.

2.2 ラティス構造の検討

熱可塑性 CFRP のプレス成形に必要な成形圧力は,ス タンピング成形の場合は 15~30 MPa という高い成形圧 力が必要であるが,H&C 成形の場合は樹脂が完全に溶融 状態での成形となるので,成形圧力としては 10 MPa も見 込んでおけば十分である.そこで,安全率を3 と仮定し, ラティスの寸法を変化させ,破壊応力 30 MPa 以上を満足 するラティスの基本構造を検討した.

図 5 に示すようなラティス構造について軸径と縦の柱 のピッチを変化させ、圧縮試験用の試験片を造形した. 圧縮試験には試験速度を一定に保持できる圧縮試験機

(島津製作所製 UH-1000kN)を使用し、ラティスに垂直 に荷重が掛かるように、図6に示す圧縮試験用治具を製 作した.

図 6. 圧縮試験用治具に試験片をセットした様子

金型の入れ子の造形金属は、マルエージング鋼および アルミの両方で試験を実施した.マルエージング鋼での 試験片の寸法および圧縮試験結果を表1に示す.表1の 結果から、熱容量を可能な限り小さくする構造として、 R5の構造で成形圧力に耐え得る構造であることが判る. 熱処理を行えば R4 の構造でも可能である. なお, R2 お よび HT2 で既に過剰性能であったため, R3 と HT3 の試 験は実施していない.

表1. マルエージング鋼製圧縮試験片寸法および結果

試験片		軸径 (mm)	ピッチ (mm)	最大荷重 (kN)	破壞応力 (MPa)
生	R1	φ1.5	9.7	207	81
	R2	φ 2.0	9.6	410	161
	R3	φ 2.5	9.5		
熱処理	HT1	φ1.5	9.7	307	120
	HT2	φ 2.0	9.6	568	223
	HT3	φ 2.5	9.5		
生	R4	φ1.5	16.16	68	27
	R5	φ 1.75	16.08	105	41
	R6	φ 2.0	16.00	148	58

但し,試験片サイズ:□50 mm,高さ 53 mm,
 天板厚さ:約5 mm,ベースプレート厚さ:約18.5 mm
 ピッチは柱の芯々距離,生は造形したそのままの状態,
 熱処理はメーカー推奨条件による時効処理を表す.

次に,熱伝導性,軽量性の観点からアルミでの造形も 実施した.アルミでの試験片の寸法および試験結果を表 2に示す.マルエージング鋼での結果から,軸径は1.5mm に固定し,柱のピッチのみを変化させた.

表 2. アルミ製圧縮試験片寸法および結果

試験片		軸径	ピッチ	最大荷重	破壞応力
		(mm)	(mm)	(kN)	(MPa)
`+	AT1	φ1.5	8.1	造形割れ発生	
這形	AT2	φ1.5	6.5	造形割れ発生	
テスト	AT3	φ1.5	5.4	造形割れ発生	
	A1	φ1.5	3.2	272	107
ラティス	A2	φ1.5	4.0	177	70
	A3	φ1.5	5.4	246	97
ジャイロイド	A4		t1.0	130	51

但し、試験片サイズ:□50 mm、高さ 50 mm、
 天板厚さ:約 5 mm、ベースプレート厚さ:10 mm
 ピッチは柱の芯々距離

造形テストの結果,図7に示すように,AT1~AT3の全 ての造形物に亀裂が発生した.そこで,柱のピッチを小 さくした A1~A3 の造形を行い,圧縮試験を実施した. 強度的にはどれも問題ないが,柱のピッチが小さく細か いラティス構造となり,蒸気の流動を妨げる恐れがある と考えられる.右下はジャイロイドという構造であるが, 強度がラティスに比べて低いため,ラティスを優先する ことにした.

図7. アルミ製圧縮試験片

マルエージング鋼では造形可能な構造でも、アルミで は造形が困難であることが判った.これは材料の強度, および線膨張係数の違いによる造形物の熱収縮の差によ るものと考えられる.そこで、アルミ製ラティスの構造 を再検討し、蒸気の流動抵抗を少なくするため、および 熱収縮による変形を防止するために軸径を変化させ、マ ルエージング鋼並の柱のピッチで造形が可能であるかの 検討を行った.

試験片	ピッチ	軸径	准形件用	
No.	(mm)	(mm)	」 垣形結未	
1	9.2	1.5	 ・天井面の崩れ発生 ・ラティス部の崩れ発生 	
2		2.0	 ・ラティス部の一部崩れ発生 ・天井部にスキージングブレードとの擦れ発生 	
3		2.5	 ・ラティス部の一部崩れ発生 ・粉敷きがうまくされず、 レーザの重ね塗りが発生 	
4	15.5	1.5	 ・天井面の崩れ発生 ・ラティス部の崩れ発生 	
5		2.0	 ・天井面の崩れ発生 ・ラティス部の崩れ発生 	
6		2.5	 ・天井部にスキージングブレ ードとの擦れ発生 	

表3. アルミ製ラティス構造の検討

図8. アルミの造形結果

表3および図8に造形結果を示す. 柱のピッチを9.2 mm および15.5 mmとし, 軸径を1.5, 2.0, 2.5 mmと変化させ造 形を行った. ②, ③, ⑥は①の造形崩れによるスキージン グ不良の影響があると判断し, ②, ③, ⑥の再造形を実施 した結果, 軸径が φ 2.0 mmの②はラティス部の一部崩れ が発生したが, 軸径 φ 2.5 mmであれば, ラティス部が崩 れることなく③, ⑥共に造形可能であることが判った.

3. 入れ子内の蒸気の流動解析

本研究のH&C 金型の設計に際しては, 金型のどこから 過熱水蒸気を供給し, 排出するのか, 昇温時間, 温度分布 を最適化するためには CAE 解析が必要である. そこで, モデル的に金型の雄型を想定した入れ子を造形し, CAE 解析モデルおよび解析条件を検討した.

3.1 モデル金型による実験と解析モデルの検討

図 9 に示す平板金型の雄型を想定したモデル金型を松 浦機械製作所製 LUMEX Avance-60 を使用して,マルエ ージング鋼にて造形した.5mm厚のシェル状ソリッドの 間にラティスを形成した構造となっている.過熱水蒸気 発生装置はトクデン製 UPSS-W20H を使用した.蒸気発 生量 20 kg/hr.,蒸気温度は 200~700 ℃の範囲で制御可能 である.

図 9. □250 mm 平板金型(雄型)の造形モデル

図 10 に示すようにモデル金型を UPSS-W20H に接続 し,500℃の待機運転状態から過熱水蒸気を流した.モデ ル金型の表面には黒色の耐熱塗料を塗布し,サーモカメ ラ (FLIR 製 E5) にて表面の温度分布を計測した.

図 11 にモデル金型の表面温度分布の例を示す.スター ト後 3 分 20 秒で金型入り口温度 270 ℃,6 分で 350 ℃に 到達,15 分経過後,供給蒸気温度を 150 ℃に下げると 17 分で熱伝導により約 270 ℃でほぼ均一になった.しかし ながら,蒸気入口が1ヶ所では,短時間で温度分布を均 一にすることは困難であることが判った.この実験結果 に基づいて CAE 解析モデルを検討した.

図 11. モデル金型の表面温度分布の例

3.2 CAE 解析モデルおよび解析条件の検討

CAE 解析ソフトには、Ansys CFX を使用した. 厳密な 解析を行うためには、蒸気の状態変化の考慮、ラティス のモデル化等が必要である.しかし、今回は蒸気の供給・ 排出位置による蒸気の流動状態、金型表面温度分布の予 測を主眼におき、モデルの簡略化や計算時間の短縮化を 図るため種々の仮定の下での解析とした.図12 に解析モ デルを示す. 左右対称であるため、1/2 対称モデルとした.

過熱水蒸気は CFX 内の物質データにある "Water Ideal Gas" に従う流体と考え, 100 ℃以下になった場合の凝縮は無視し た.蒸気の流路はラティス構造であるが, モデルを簡略化す るため Porous モデルとし, 空隙率は 0.93 とした. その他い くつかのパラメータを変えて何度か計算を行い,図 11 左側 の温度分布が再現される計算条件を見い出した. CFX の計 算式により, 平均表面温度を areaAve(Temperature)@Die wall surface, 温度分散を areaAve((Temperature-varTmean)^2)@Die wall surface により求めた.

蒸気入口の口金の厚さを 10 mm とし、口金の横幅を 15, 65,120 mm と変化させた場合の解析例を図 13 に示す.モ デルでは切りの良い数値にしたが、実際の口金寸法は厚 さ 12.66 mm、横幅 117 mm である.解析結果として蒸気 の流線および,600 秒加熱時の金型表面温度分布の結果を 示した.図 11 の実験結果と比較すると温度分布は定性的 に一致していることが判る.実験では平均表面温度を求 めることは出来ないが、解析結果の温度チャートでは入 口近傍の温度は 315 ℃となっており、昇温速度には若干 のずれがある.しかし、本解析の目的は蒸気の供給・排出 位置の設計、予測される金型表面温度分布の解析である ので、本解析モデルにより設計を進めることとした.

図 13. 口金の横幅の影響解析の例

4. 金型構造の検討

プレス成形機に金型を設置し、蒸気配管を行うことを 想定すると、プレス機の前面には安全装置としてエリア センサーがあり、背面には熱盤のヒータ配線や冷却水の 配管があるため、前面や背面からの蒸気配管を行うこと は出来ない.必然的にプレス機の右側から蒸気を供給し、 左側から排出する設計になる.これらの制約条件の下で、 蒸気の供給口、排出口の最適化を行うため、実験および CAE 解析を実施した.

4.1 CAE 解析による蒸気入口, 出口の検討

蒸気の排出はプレス機正面から見て左側から排出する 前提で,まずは蒸気出口寸法の影響を解析した.出口の 横幅 60 mm と 200 mm で比較を行ったが,平均表面温度 も温度分散も大きな差は無かった.そこで出口の横幅は 温度分散がわずかに小さい 60 mm とした.入口および出 口の形状を図 14 のように決定し,図 15 に 3 種類のパタ ーンについて解析を行った結果を示す.

図 14. 蒸気の出入口の形状および寸法

図 15. 蒸気入口の位置による影響

図15に蒸気の流線および,600秒加熱時の金型表面温 度分布の結果を示す.同図に示す通り,蒸気入口の位置 について中央は平均温度も低く,温度のばらつきが大き く,両端が最もばらつきが小さくなった.よって,蒸気の 入口の位置は,両端が最も優れていると考えられる.

4.2 入れ子の昇温試験(マルエージング鋼)

前項で CAE による蒸気入口および出口の設計指針が 得られたことから,実際に金型入れ子を造形し,過熱水 蒸気による昇温試験および CAE 解析結果との比較を行った.大型の金属 AM 機で造形可能な最大寸法は□600 mm であるため,大型成形品の成形を想定すると金型入 れ子が分割構造になることが予想される.そこで,□250 mm の平板成形用金型について福井県工業技術センター の協力の下,CAE 解析との比較を行えるように図 16 の ような 6 分割構造の入れ子を設計し,松浦機械製作所製 LUMEX Avance-25 により造形した.使用しない入口は蓋 をする設計である.図 17 に造形した部品の一部を示す.

図 16. マルエージング鋼分割構造入れ子

図 17. 250 mm マルエージング鋼分割構造入れ子

図 18. 過熱水蒸気流動試験セットアップ状態(入口両端)

図17に示す金型入れ子を組立て過熱水蒸気発生装置(ト クデン製 UPSS-W20H) に接続し, 流動試験を実施した. 装置のセットアップ状態を図 18 に示す. 蒸気の入口は両 端,出口は左側である.図20に示すサーモカメラの画像 でも分かるように、入れ子の中央部分に中々蒸気が入っ て行かず,温度分布に分割の境界が明瞭に見える.また, 蒸気を流し始めて2分後ぐらいから,漏れ始めた蒸気が 入れ子表面で結露し、結露の影響によって温度が上がら ないことが判った.そこで、図19に示すように分割の継 ぎ目を耐熱パテで埋め、蒸気流動試験を実施した. 図 20 に蒸気流動試験の結果を、図21に昇温カーブを示す.蒸 気漏れを防止することにより,昇温速度,到達温度,冷却 速度全てにおいて, 大幅に改善された. しかし, b, e, g, h, iの領域は、目標成形温度 270 ℃に到達していない.これ は、分割部分の熱抵抗の影響であると推測される.以上 の結果、入れ子を分割構造にする場合は、過熱水蒸気が 漏れないような分割入れ子の接合方法を開発する必要が あることが判った.

図 19. 分割の継ぎ目を耐熱パテにて処理

図 20. マルエージング鋼分割入れ子パテ処理(入口両端) 上段: CAE, 下段:表面温度分布

図 21. マルエージング鋼分割入れ子パテ処理の昇温カーブ

4.3 入れ子の昇温試験(アルミ)

マルエージング鋼と同様の実験をアルミでも造形を行 い実施した.ただし、マルエージング鋼での実験で分割 構造では蒸気漏れという課題が判明したため、アルミに おいては入れ子を一体構造とした.アルミはマルエージ ング鋼に比べて線膨張係数が大きいことから収縮量がよ り大きくなり、変形や亀裂発生の原因となる.そこで、ベ ースプレートの一部を成形面とするハイブリッド金型と した.図22 にその概念図を示す.

図 22. アルミー体構造入れ子の概念図

造形上がりの状態では確認できなかったが,所定の寸法 に仕上げる機械加工後に,四隅に大きな亀裂が確認された. そこで,耐熱パテで亀裂を埋めた上で過熱水蒸気流動試験 を実施した.装置のセットアップ状態を図23に示す.

図 23. 過熱水蒸気流動試験セットアップ状態(入口両端)

図 24 および図 25 に示す結果より、マルエージング鋼 に比べて、温度分布は均一であり、到達温度も高いこと が判る.蒸気入口が互い違いの場合も実施したが、入口 両端に比べて、全体に到達温度が低かった.

以上,これまで得られた結果から,材質はアルミとし, 過熱水蒸気入口の位置は,両端に決定した.

5. 実証実験

使用するプレス機の□300 mm の盤面に金型をクラン プすることを考慮し,出来るだけ成形面積を確保するよ うに物性測定用の平板金型を設計した.

5.1 CAE 解析による蒸気入口の形状設計

図 24 および図 25 に示す通り,蒸気出口 g,h,iの部分 の温度が他の部分に比べて温度が低い.そこで,CAE 解 析により蒸気入口の形状を検討した.図26に示すように, 設計した金型から下型の蒸気流路を取出し,解析を行っ た.蒸気出口近傍の温度が低いことから,Aの元々の設 計に対して,Bは蒸気入口で出口に向かうテーパとした. C は温度の低い出口の方から蒸気を導入し,逆に向かっ て蒸気を導入するテーパとした.解析結果を図27に示す. 蒸気の流線および温度分布の結果から,Bの出口に向か うテーパ形状が到達温度も高く,表面温度のばらつきも 少ないことが判る.

図 26. 過熱水蒸気入口形状の解析モデル

図 27. 過熱水蒸気入口形状の解析結果

5.2 平板成形用 H&C 金型の製作

これまでの検討で得られた知見を盛り込み,上型および下型の過熱水蒸気流路を有する入れ子の設計を行い, モールドベースに入れ子を組込む構造として金型を設計 した.図28に上型および下型の入れ子を示す.造形物に 図29に示すような多数のクラックが発生した.種々の応 力緩和方策の検討を行い,成形面のクラックは解消でき たが,クラックの完全な防止は出来なかった.

図 29. 成形面に発生したクラック

造形した上型および下型の入れ子をモールドベースに 組込み金型を完成した.入れ子とモールドベースの間に は入れ子の熱が奪われないように断熱構造とした.また, 上下型には成形面の中央および四隅に熱電対を内蔵し, 下型には脱型用のエジェクターピンも内蔵した.金型の 詳細な構造は,金型メーカーのノウハウが多く含まれる ため省略させていただく.

5.3 H&C 金型による熱可塑性 CFRP の平板成形

完成した金型を大学所有の37トン油圧プレス機(神藤 金属工業所製 AWF-37HHC)に設置し,過熱水蒸気発生 装置(トクデン製 UPSS-W20)をレンタルし,700℃に耐 え得る耐熱配管(SUS 316)によって,製作したH&C金 型と接続した.配管には過熱水蒸気が金型に到達するま で,極力温度が下がらないように,断熱材を施工した.図 30に実験装置全景を示す.

成形材料は CF (T700, Toray) と PA6 (DIAMIRON, Mitsubishi Chemical) からなる薄層の一方向 (UD) プリプ レグシート (福井県工業技術センター提供)を用い,厚さ 40 µm,設計 Vf 50 %のプリプレグシートを同方向に重ね ることで,一方向強化材 (UD 材)の成形を行った.

図 30. 実験装置全景

UPSS を 500 ℃の待機運転状態とし, 成形スタートと同時に設定温度を 700 ℃とした. 20 分後に UPSS の蒸気温度は 700 ℃に到達した. 図 31 に金型の温度センサーによって得られた温度カーブを示す. 図中 1~5 は下型, 6~10 は上型の温度センサーの位置を表す.

図 31. H&C 金型の昇温カーブ

金型表面温度(図 32)を表面温度計にて測定後,金型 温度の過加熱を避けるため、UPSSの設定温度を500℃に 下げて金型温度を一定に保持した.図 31 より100℃から 成形温度到達までの昇温時間は45分程度,図 32 より金 型の温度分布は260±10℃程度であることが判る.また, 冷却は蒸気と同じ経路に水を使用したところ,蒸発の潜 熱により極めて速い冷却が可能であることが判った.

本実験は3回行ったが,非常に良く再現することがで きた.但し,目標の昇温時間は5分であり,目標との乖 離は大きい.また,金型温度が100℃を超えるまでは, 入れ子の亀裂から蒸気が漏れることによって昇温が妨げ られることも判明した.

図 32. H&C 金型の表面温度分布(成形スタート時)

金型温度が成形温度に到達後,成形材料を金型に投入 し,成形圧力1 MPa,5 分の予備成形後,本成形5 MPa, 30 分を行い,圧力を保持したまま冷却を行った.

成形が正常に行えているかの確認として,従来金型に よる過去の研究結果から,炭素繊維とマトリックス樹脂 の接着強度を感度良く反映するシャルピー衝撃試験を実 施した.JISK 7061 に準拠し,炭素繊維軸と平行方向のエ ッジワイズ試験を実施し,従来金型との比較を行った. 図 33 に示す H&C 金型によるシャルピー衝撃値は,従来 金型による値と同等であり,成形は正常に行えているも のと判断した.

6. 結 言

成形サイクルが短いことやリサイクル性に優れている ことから,軽量化材料の最有力候補として熱可塑性 CFRP が注目されているにも関わらず,我が国においてはほと んど普及していない.その要因のひとつにコストが高い ことが挙げられているが,プリプレグから成形品を製造 するための成形技術開発がほとんど行われていないこと も大きな問題である. そこで、本研究ではプリプレグからダイレクトに成形 品を得る成形技術として、金型のH&C技術の開発を行っ た.得られた結果を以下にまとめる.

・ラティス構造の耐圧強度

熱容量が小さく,プレス成形の圧力にも耐える金型構 造として,金属 AM 技術によるシェルとラティスから なる入れ子構造を考案し,その可能性を示した.

- ・過熱水蒸気による金型入れ子の昇温試験
- 実験と CAE 解析の結果が定性的に良い一致を示した. CAE 解析は金型の流路設計,温度分布の予測に有用で ある.また,蒸気発生能力,配管抵抗,配管の断熱の影 響が大きく,実用化には更なる検討が必要である. ・H&C 金型による成形実験
- 目標である金型昇温時間 5 分を達成できなかった.目 標未達の原因は,蒸気発生能力不足,入れ子の亀裂に よる蒸気漏れ,金型の断熱不足等が考えられる.一方, 冷却媒体に水を使用することにより,冷却効果は極め て大きいことが分かった.
- ・H&C 成形で作製した熱可塑性 CFRP の機械特性評価 従来工法で作製した試験片と同等の衝撃値が得られた.
- H&C 金型の材質

アルミは金型温度の均一性は得られたが、造形時の膨 張・収縮による応力集中部分での亀裂を回避すること が極めて困難であった.H&C 金型の入れ子の材質とし ては、強度も高いマルエージング鋼が適している.

謝 辞

本研究の実施にあたり公益財団法人天田財団より重点 研究開発助成 B 課題研究(AF-2017003)を賜りました.こ こに深く感謝申し上げます.また,本研究は金属積層造 形技術(三光合成,松浦機械製作所,福井県工業技術セン ター),流体の CAE 解析技術(福井大学,三光合成),金 型設計技術(岩崎機型,福井大学),熱可塑性 CFRP の成 形・評価技術(福井大学)という異なる技術分野の知識, 経験,技術を結集して成されたものであります.ここに 関係者の皆さまへ深く感謝申し上げます.

参考文献

- 1) 山根 正睦: "熱可塑性コンポジットのプレス成形の特 徴と適用事例", プラスチックス, Vol. 7, 日本工業出版 (2018), pp.11-19.
- 2) 富岡 義人,小野 徹郎編著: "建築デザインの構造と造形", 鹿島出版会 (2015).