フレキシブル基板上 poly-Si TFT 作製に関する研究

琉球大学工学部 電子情報通信コース 助教 岡田 竜弥 (2018 年度 奨励研究助成(若手研究者) AF-2018236-C2)

キーワード:薄膜トランジスタ、フレキシブル基板、レーザアニール

1. 研究の目的と背景

スマートフォンやタブレットの普及に伴い、中・小型デ ィスプレイへの要求も大きくなっている。現在主流のディ スプレイはガラス基板上に形成されているが、基板の特性 から、落とすと割れる、曲げられない、重い、などの課題 がある。この基材となるガラスを、フレキシブルなプラス ティックに置き換えることができれば、落としても割れな い、折り曲げ可能、軽量で扱いやすいフレキシブルディス プレイの実現が期待できる。ディスプレイの画素の駆動に は薄膜トランジスタ(TFT)が用いられており、画面のムラ なく、高コントラスト、高速駆動などが求められ、特に半 導体層の結晶性、信頼性が求められる。プラスティック基 板への応用に向けては、低温で製膜可能な有機半導体や酸 化物半導体の研究が盛んであるが、信頼性と長期安定性は 従来から広く用いられてきた無機半導体の Si が有利であ ると考えている。高性能な TFT を作製するためには、Si に熱処理を施し結晶性を向上させた poly-Si を形成する ことが有効であり、特にプラスティックなどの基材に熱的 ダメージを与えず、Si のみを高温にして結晶化するため には、高エネルギー密度のレーザをごく短時間照射するこ とが有効である。また、低温で TFT を作製するためには、 ソース/ドレイン領域も低温で形成する必要がある。従来 の poly-Si TFT の製造工程では、イオン注入もしくは不純 物ドーピングを行なった後に高温の活性化アニールする ことでソース・ドレイン領域を形成しているが、これを金 属に置き換えることで高温の活性化アニールが不要とな る[1,2]。この金属ソース/ドレイン構造 TFT (図1)は、本 研究室で提案し、検討を行なっている。本研究では、プラ スティック基板としてポリイミドを用い、Si 膜の結晶性 を上げつつ、レーザ照射時の基板への熱ダメージを低減す る熱バッファ層について、数値計算による温度解析を用い て検討を行った。また、RF スパッタ法により製膜した熱 バッファ層やSi 膜に対してレーザ照射を行い、Si 膜の結 晶化、また TFT 特性についても検討を行った。

2. 実験方法

2・1 青色半導体レーザによる Si 膜の結晶化

ポリイミド(PI)基板上に RF スパッタ法により製膜した Si 膜に波長 405 nm で連続波の青色半導体レーザを照射 して Si 膜を結晶化する場合を想定し、レーザ照射時の膜 および基板温度を熱伝導方程式から温度解析により検討 した。まず従来から用いている構造として、熱遮断層を用

図1 金属ソース/ドレイン構造 poly-Si TFT 構造

(a)	(b)	(c)
	a-Si (50 nm)	a-Si (50 nm)
a-Si (50 nm)	SiO ₂ (100 nm)	SiO ₂ (100 nm)
SiO ₂ (100 nm)	 熱遮断層(600 nm)	熱遮断層(1950 nm)
熱遮断層(600 nm)	Ti (50 nm)	Ti (50 nm)
Polyimide (PI)	Polyimide (PI)	Polyimide (PI)
Glass	Glass	Glass

図2 試料構造

いた図 2(a)の構造を想定し、レーザ走査速度を 500 mm/s で一定とし、レーザエネルギー密度をパラメータとして解 析した。また、PI 基板への熱負荷低減を目指し、熱拡散 層として Ti 層を導入した構造(図 2 (b))、さらに熱遮断層 を厚くした構造(図 2 (c))についても検討を進めた。さらに それぞれの構造に対して実際にレーザを照射して効果を 検証した。

2・2 エキシマレーザによる Si 膜の結晶化と金属ソー ス/ドレイン構造 TFT

PI 基板上に RF スパッタ法により製膜した Si 膜に波長 351 nm (XeF)のエキシマレーザアニール(ELA)を施し、反 射率スペクトルにより結晶性、原子間力顕微鏡により表面 形状を評価した。また、ELA を施した試料を用いて金属 ソース/ドレイン構造 poly-Si TFT を作製して電気特性を 評価し、4% H2アニールの効果を検討した。

3. 実験結果

3・1 青色半導体レーザによる Si 膜の結晶化

図2の試料構造(a)に対する温度解析の結果を図3に実 線で示す。レーザ照射にともないSi 膜温度が急激に上昇 し、数 µs 程度の急速熱処理ができることが確認された。 膜温度はレーザエネルギー密度の増加とともに上昇する が、アモルファスSi(a-Si)膜が溶融する1423 K 程度に達 するのは 60 mW の条件となった。しかしこのとき、熱遮 断層を挟んでいるものの、PI 基板表面は 1070 K に達し ており、軟化点を超えている。

次に基板表面の熱集中を緩和する目的で、熱遮断層の下 に熱拡散層としてTiを用いる構造(試料構造(b))を考え、 同様に温度解析により検討した結果を図3の破線で示す。 Ti層を導入することで、熱遮断層下部においてレーザ照 射の前方方向への熱拡散が促進され PI基板表面の最高温 度を70K程度低減できることが分かった。しかし、PI 基板表面を軟化点以下にすることはできなかった。そこで、 熱遮断膜を厚くした構造(試料構造(c))について検討し た。1950 nm厚の熱遮断層を用いることで、a-Si 膜が溶 融すると見込まれる条件でもPI基板表面温度を730K程 度に抑えられることが分かった。

次にそれぞれの試料(試料構造(a)~(c))を実際に作製した。Ti 層を真空蒸着法により製膜したのち、熱遮断層、 SiO₂、a·Si はそれぞれ RF スパッタ法により真空一貫で成 膜した。作製した試料に青色半導体レーザを照射したのち

図 3 熱拡散層として Ti 層を導入した場合の(a)Si 膜の 温度、および(b)PI 基板表面の温度

図 4 熱拡散層として Ti 層を導入し、熱遮断層を厚く した場合の Si 表面温度および PI 基板表面温度

試料の様子を観察した。しかし今回検討した条件では、結 晶化が確認できた試料も膜剥がれが発生し、Ti やバッフ ァ層など、基板以外にも急速熱処理中の温度やアブレーシ ョン、応力などの影響を検討する必要があることが分かっ た。

3・2 エキシマレーザによる Si 膜の結晶化と金属ソース/ ドレイン構造 TFT

次にエキシマレーザにより試料作製を行なった結果を 示す。図2の試料構造(a)を用い、エネルギー密度70-90 mJ/cm²の条件で ELA を行なった試料の反射率スペクト ルを図5に示す。ELA を施すことで、結晶性Siの形成に 起因する280 nmおよび360 nm付近の反射率スペクトル にピークが発現し、Si膜が結晶化したことが確認できた。

それぞれの試料の表面形状について原子間力顕微鏡に より評価した結果を図6に示す。エネルギー密度の上昇に 伴い平均二乗誤差(RMS)値が大きくなっており、レーザ照 射によりSiが結晶化し結晶粒が成長したことを反映して いると考えられる。

図5 ELA 前後のSi 膜の反射率スペクトル

図6ELA前後の表面形状

次に、90 mJ/cm²の条件の試料を用いて金属ソース/ド レイン構造 poly-Si TFT を作製した。作製工程を図7に示 す。ソース/ドレイン部分の形成は、真空蒸着により製膜 した Ti を用いた。また、欠陥低減を目指し、チャネルの パターニング後にプレ H₂アニールとして、および Al 電 極パターニング後にポスト H₂アニールとして、それぞれ 窒素希釈の4% H₂(4% H₂ + 96% N₂)を用いて200℃の熱 処理を施し、各段階でのアニールの効果を検証した。レー ザ照射以外のプロセス温度は最高200℃である。

まず、プレ H_2 アニールは施さず、ポスト H_2 アニール のみ施した試料の I_d -Vg特性を図8に示す。ポスト H_2 ア ニールを施す前(0 min)は移動度 0.9 cm^2 /Vs だったのに対

図8ポスト H_2 アニールのみを施したTFTの I_d -Vg特性

図9プレH2アニール後、ポストH2アニールを施した TFTのId-Vg特性

し、30 min のアニールを施すことで 40 cm²/Vs に上昇し、 さらに 30 min 追加(60 min)することで 130 cm²/Vs が得 られたのち、90 min 以上では 30 cm²/Vs 程度に下がって しまった(図 10)。

次に、プレH₂アニールを 60 min 行った試料に対して、 同様にポストH₂アニールを施した試料のI_d-V_g特性を図9 に示す。ポストH₂アニール前の移動度は 4.9 cm²/Vs であ り、ポストH₂アニール 90 min において 220 cm²/Vs が得 られた(図 10)。図 10 に移動度をまとめるが、チャネルパ ターニング後に一旦プレアニールを行うことで、ポストア ニールによる移動度の増加がより効果的になる結果が得 られた。しかし、ポストアニール時間を増加した際の閾値 電圧の上昇や、負バイアス側のリーク電流が大きいといっ た課題が残り、TFT 特性のさらなる向上に向けて、絶縁 膜も含め今後検討が必要である。

図10 プレH2アニール有/無それぞれのポストH2アニ ール後の移動度

4.結論

フレキシブル基板上 poly-Si TFT 作製に向けて、青色半 導体レーザ、エキシマレーザを用いたポリイミド(PI)基板 上 Si 膜の結晶化、および金属ソース/ドレイン構造 TFT の評価を行った。熱遮断層に加えて熱拡散層として Ti を 導入することで PI 基板表面温度を下げられることが示唆 されたが、今回青色半導体レーザを用いて検討した条件で は TFT プロセスまで回せる結晶化には成功しなかった。 エキシマレーザにより作製した Si 膜により金属ソース/ド レイン構造 TFT を作製した結果、ソース領域パターニン グ後に一旦 200℃ 60 min の 4% H2アニールを施したう えでポストアニールを追加することで、移動度 220 cm²/Vs が得られた。TFT 特性のさらなる向上に向けて、 閾値電圧やリーク電流の低減について検討が必要である。

謝 辞

本研究は公益財団法人天田財団奨励研究助成(若手研究 者)(AF-2018236-C2)を受け実施された。また、ポリイミド 基板に関して東洋紡(株)奥山哲雄様、ELA に関してギガフ ォトン(株)野田勘治様、諏訪輝様に感謝いたします。

参考文献

- K. Sugihara, K. Shimoda, T. Okada, and T. Noguchi, J. Inf. Display 18, (2017) 173.
- T. Noguchi, and T. Okada, J. Inf. Display 19, (2018) 159.