レーザー集光照射光還元反応による

超微細金属メッシュ透明導電性膜の開発

静岡大学 電子工学研究所 准教授 小野 篤史 (2018 年度 奨励研究助成(若手研究者) AF-2018225-C2)

キーワード:透明電極,光還元,金属

1. 研究の目的と背景

タッチパネルの急速な普及と大型化への需要に伴い,近 年金属メッシュ透明導電性膜が開発されている.しかし, マスクリソグラフィやインクジェット法などの従来技術 によるパターニング分解能は数 µm が限界であり,視認性 の観点からサブミクロン線幅の実現が求められている. 我々の研究グループは,光還元反応によるサブミクロン線 幅の金属細線作製技術を確立した.金属イオンを含有した 透明ポリイミドに対してレーザー光を集光照射すること により,金属を還元析出させるパターニング技術である. 本技術を応用し,マスクレスの直接描画により,今まで不 可能であった線幅 1 µm 以下の金属メッシュ透明導電性膜 を開発する (図 1).

現在最も広く用いられている透明電極材料は ITO である. ITO 透明電極膜は抵抗率が約 $1.5 \times 10^{-4} \Omega$ ·cm,可視光透過率はおよそ 80 %である. 昨今,タッチパネルなどの需要の急増に伴い,透明導電性膜の生産量が増加し,さらにフレキシブル化が求められているが,ITO 膜は無機結晶膜であり,折り曲げると容易に割れるためフレキシブル化

図1 レーザー光還元法による金属メッシュ透明導電性 膜作製技術

への対応が困難である.これに対し本研究は,フレキシブ ルプリント回路基板としてもよく用いられているポリイ ミドを母材としており,銀などの金属は比較的展延性を有 するため,フレキシブル化に適している.

本研究はハイパルスエネルギー照射のアブレーション による金属加工技術と異なり、わずか数 mW の CW レーザー 照射にて光還元反応によりボトムアップ的に金属をパタ ーニングする技術である.マスクレスなレーザー直接描画 法により、ITO 透明電極よりも優れた抵抗率および透過率 を示す金属メッシュ透明導電性膜の開発を目的とする.

レーザー光還元法は、金属イオンを導入した溶液やポリ マーへのレーザー集光照射により焦点域のみ金属イオン を還元し、金属粒子を析出させる技術である. レーザー走 査に応じたパターニングが可能である. 1987 年, ピッツ バーグ大学の Ahern 氏らは硝酸銀水溶液(光還元剤)への レーザー照射により銀粒子が形成されることを実証した [1]. さらに、2002 年、チャルマース工科大学の E. J. Bjerneld 氏らは、銀イオンの供給源となる硝酸銀と還元 剤であるクエン酸ナトリウムを混合した硝酸銀溶液に波 長514.5 nmのCWレーザ光を開口数N.A.=0.55の対物レン ズを用いて集光照射し、大きさ1.3 µm 程度の銀粒子析出 を実証した[2]. 2005 年にボストン大学の Baldacchini 氏 らは硝酸銀とポリビニルピロリドンとエタノールとを混 合した光還元剤を開発した[3].加熱によりフィルム化し た光還元剤にフェムト秒パルスレーザーを集光照射し,銀 細線を作製した.ポリビニルピロリドンは還元剤とキャッ ピング剤の役割を果たす. レーザー照射によりポリビニル ピロリドンから電子が放出され、銀イオンを還元する. そ の後、ポリビニルピロリドンは還元された銀ナノ粒子表面 に吸着し、銀ナノ粒子の成長を抑制する。2008年、横浜 国立大学の丸尾氏らは Baldacchini 氏らと同様の光還元 剤にフェムト秒パルスレーザーを照射し、銀細線を作製し た[4]. 作製された銀細線の線幅は1.2 µm 程度であった. レーザーパワーと走査速度を最適化することにより、サブ ミクロンスケールまで微細化された銀細線が作製される ことも示している. さらに丸尾氏らは硝酸銀濃度を調製し, 作製される銀細線の抵抗率の硝酸銀濃度依存性を示した. 硝酸銀濃度 7.3 wt%の光還元剤にて作製された銀細線の電 流電圧特性より,抵抗率 3.48×10⁻⁷Ωm を達成した.2016 年に中国科学院大学の Zhao 氏らは硝酸銀,アンモニア,

N-デカノイルサルコシンを混合した銀イオン水溶液を光 還元剤として用い、フェムト秒パルスレーザー照射により ガラス基板上にメタルメッシュ構造を作製した[5].作製 されたメタルメッシュ構造はシート抵抗値 47 Ω/sq, 可 視光透過率 93 %であった. 銀細線の線幅は 0.5 µm, 厚さ は 200 nm, 抵抗率 8.8×10⁻⁷ ~1.1×10⁻⁶ Ωm であり, レ ーザー光還元法がサブミクロンスケールの微細金属配線 作製手法として適することが示された.

以上に示した通り、レーザー光還元法は光還元剤へのレ ーザー集光照射のみにより金属パターンを作製する技術 である.マスクレスかつ簡便なパターニング技術であるた め,昨今の主流である少量多品種な製品生産体制に対応で きる. さらに作製される金属構造はサブミクロンスケール まで微細化が可能である.サブミクロン配線を有するメタ ルメッシュ透明電極の新たな開発技術として実用化が期 待されている.

2. 実験方法

本研究では、 半導体 CW レーザー (波長 405nm, OBIS FP 405 LX, Coherent) を光源とした照射光学系を構築し (図 2)、レーザー光還元法により銀細線を作製した.倒 立顕微光学系をベースとし、レーザーが裏面から照射され るように光学系を構築した. 電動ステージおよび電動シャ ッターを用いて,任意の照射時間,速度にて細線を描画し た. レーザーパワーは, 可変 ND フィルターにより調整 し、対物レンズ手前の光強度をパワーメータにて計測した.

銀イオン含有ポリイミドをガラス基板上にスピンコー トにより塗布し、薄膜形成した. 膜厚はおよそ 300nm 程 度とした.プリベーク後,CW レーザーを集光照射し,銀 イオン含有ポリイミド前駆体に銀のメッシュパターンを 作製した.作製した銀細線の線幅および抵抗率評価のため, 未露光部のポリマーを除去した. 作製した銀細線の線幅, 高さ,長さについて,それぞれ SEM, AFM,光学顕微鏡 にて観察, 計測した. 作製した銀細線の両端に電極パッド を真空蒸着により形成し、4端子法により電流電圧特性を 計測し,作製した銀細線の導電性を実証した.

図2 レーザー光還元光学系

3. 実験成果

図 3 は、レーザーパワー1.2mW, 走査速度 10µm/sec の条件にて作製した銀細線の SEM 像を示す.線幅は 0.93um であり、レーザー光還元法によりサブミクロン線 幅の銀細線が作製されることを実証した.拡大SEMより, 粒子状の銀が凝集析出し、ラインを形成していることが分 かる.

図 4 は、レーザーパワー1.0mW、走査速度 30um/sec の条件にて作製した銀細線のSEM像およびエネルギー分 散型 X 線分析 (EDS: Energy Dispersive X-ray Spectroscopy) 画像を示す. 銀の Laの特性 X 線エネル ギーである 2.984keV にてマッピングした. 作製構造と一 致する場所において信号が強く検出されていることが分 かる.これらの結果より、レーザー光還元法により作製さ れた構造が銀であることを実証した.

レーザーパワーおよび走査速度に対する銀細線の線幅 依存性を調べた.図5は、レーザーパワー1.0mW~5.0mW、 走査速度 1.0µm/sec~1000µm/sec の条件にて作製したレ ーザーパワー・走査速度に対する銀細線の線幅依存性を示 す. レーザーパワー1.4mW 以下の条件にてサブミクロン 線幅の銀細線が作製されることが分かった. さらに、レー ザーパワー1.0mW, 走査速度 100μm/sec にて銀細線の最 小線幅 0.8µm を達成した.

図3 作製した銀細線 SEM 像. レーザーパワー1.2mW, 走 查速度 10µm/sec.

図 4 (a)作製した銀細線 SEM 画像. レーザーパワー1.0 mW, 走査速度 30 μm/sec. (b)作製した銀細線(a)の EDS 原子マッピング画像. 2.984 keV にてマッピング.

図 5 レーザーパワーおよび走査速度に対する銀細線の線 幅依存性

走査速度に対して線幅はほぼ一定の値を示した.一般的 に走査速度が高くなるほど,単位時間単位面積あたりに与 えられるフォトン数が少なくなり銀析出量が減少するた め,線幅は細くなると考えられるが,走査速度 1~ 100μm/secの範囲内において変化は見受けられなかった. レーザーパワー5.0mWのとき,高速化に伴って若干の線 幅減少が見受けられることから,今後,100μm/sec以上の 走査速度条件において線幅が減少するか検証する.

レーザーパワーが高いほど線幅は太くなった.これは, レーザーパワーが高いほど単位時間あたりに与えられる フォトン数が多くなり,銀析出量が増加するため,線幅が 太くなったと考えられる.本照射条件下においてはレーザ ーパワーに対して顕著な線幅変化が見受けられた.これら の結果から,銀の析出確率,銀の成長速度に対する励起フ ォトン数,走査速度が,銀の線幅に寄与していると考えら れる.

図 6(a)は、作製した銀細線の電流電圧特性を示す.電流 電圧特性は,線形比例を示し,その傾きから抵抗値は 1.28kΩと算出された. 作製した銀細線の抵抗値と, 線幅, 厚さ,長さから,抵抗率を求めた.図 6(b)は、レーザーパ ワーおよび走査速度に対する抵抗率依存性を示す. レーザ ーパワーが高いほど、走査速度が低いほど抵抗率が低いこ とが分かった.抵抗率であるため、線幅等、全て規格化さ れた値であるが、パワーが高く、線幅が太い方が、抵抗率 そのものも低くなることが示唆された.また,線幅は走査 速度に対してほぼ一定であったが,抵抗率は走査速度の増 大に伴い、高くなることが分かった.このことから、走査 速度が高くなると、析出した銀粒子の凝集密度が低下し、 銀粒子同士のコネクティビティが低下したと考えられる. したがって、 導電性の観点では、 低速かつ高強度であるほ ど良いが,生産性や狭線化の観点では逆の傾向であるため, これらはトレードオフの関係にあるといえる.

図 6(b)より,レーザーパワー2.0mW にて作製された銀 細線を 300 度 2 時間の条件にて熱アニール処理したとこ ろ,照射パワー5.0mW よりも低い抵抗率を示した.熱ア ニールは,線幅を太くすることなく抵抗率を向上する方法 として有効な手法であることが示唆された.これは,析出

図 6 (a) 作製した銀細線の I-V 特性, (b) レーザーパワー および走査速度に対する銀細線の抵抗率依存性

した銀粒子を被覆している界面活性剤であるポリマーが 加熱により揮発し,銀粒子同士が結合したためと考えられ る.

これらの結果より,本研究技術は従来の金属メッシュ透明導電性膜に対し,同等の抵抗率を示し,従来技術よりも 細い金属細線が作製されることを示した.本技術は,レー ザー照射により任意パターンを形成できるマスクレスパ ターニング技術であるため,多品種少量生産に対する低コ スト化が期待される.

これら基礎データをもとに、金属メッシュ透明導電性膜 を作製した.金属メッシュ構造の光透過率は、金属細線の 充填割合に依存する.すなわち、金属メッシュ間隔と金属 線幅とに依存する.メッシュ間隔が大きいほど、線幅が狭 いほど透過率は向上する.一方、導電性膜としてのシート 抵抗値は大きくなるため、金属メッシュ透明導電性膜にお いて透過率とシート抵抗値はトレードオフの関係にある. 従って、透過率が高くかつシート抵抗値の低い金属メッシ ュ透明導電性膜の開発が求められる.

図7は、本技術により作製した金属メッシュ透明導電性 膜の光学顕微鏡像および可視光透過率を示す.メッシュ間 隔は20µm、30µm、40µmとした.銀のメッシュパターン が作製されていることが分かる.それぞれの可視光透過率 は、可視域平均にて、83%、90%、93%となった.作製し たメッシュ構造の電流電圧特性を計測し、シート抵抗値を 算出した.算出したシート抵抗値と透過率とをプロットし た結果を図8に示す.一般的なITO透明電極よりも優れ た透過率とシート抵抗値であることが分かる.

図 7 (a)-(c) 作製した金属メッシュ構造の光学顕微鏡画像, (d) 透過スペクトル.メッシュ間隔 (a) 20µm, (b) 30µm, (c) 40µm.

図8 可視光透過率とシート抵抗値の関係

4. 結論

本研究では、銀イオン含有ポリマーを用いてレーザー光 還元法によりサブミクロン線幅の配線を有する金属メッ シュ透明導電性膜を作製した. 波長 405 nm の CW レー ザーを銀イオン含有ポリイミド前駆体に集光照射し銀細 線を作製した. 作製された銀細線の EDS エネルギースペ クトルピークは銀の La エネルギー2.984 keV に現れ、レ ーザー光還元法により作製された構造が銀であることを 実証した.

レーザー光還元法により作製された銀細線の線幅につ いてレーザーパワー・走査速度依存性を調べた. 銀細線の 線幅はレーザーパワーの減少及び走査速度の増加により 微細化した. レーザーパワー1.0 mW, 走査速度 100 μ m/sec の条件にて作製された銀細線は最小線幅 0.8 μ m を達成した. レーザーパワー2.0 mW, 走査速度 10 μ m/sec の条件にて作製された銀細線の線幅はアニール (300 °C, 2h) により 1.4 μ m から 1.0 μ m へ微細化した.

レーザー光還元法により作製された銀細線の抵抗率に ついてレーザーパワー・走査速度依存性を調べた. 銀細線 の抵抗率はレーザーパワーの増加, 走査速度の減少及びア ニール (300 °C, 2h) により低抵抗率化した. レーザー パワー2.0 mW, 走査速度 1.0 μ m/sec, アニール 300 °C, 2 h の条件にて作製された線幅 1.0 μ m の銀細線は最小抵 抗率 20.1 μ Ω cm を達成した.

レーザー光還元法によりガラス基板上にメタルメッシ ュ構造を作製した.線幅 1.0 μ m,メッシュ間隔 20 μ m, 30 μ m,40 μ m にて作製されたメタルメッシュ構造の可視 光透過率は83%,90%,93%であり,透明電極として実 用可能な透過率 80%以上を達成した.メッシュ間隔 20 μ m,30 μ m,40 μ m にて作製されたメタルメッシュ構造 のシート抵抗値は11.6 Ω /sq,21.4 Ω /sq,24.2 Ω /sq と 実測された.現行の ITO 透明電極に対して高い可視光透 過率及び低いシート抵抗値を達成した.

参考文献

- Angela M. Ahern and Robin L. Garrell, "In Situ Photoreduced Silver Nitrate as a Substrate for Surface-Enhanced Raman Spectroscopy", Anal. Chem. 59, 23, 2813-2816 (1987).
- [2] Erik J. Bjerneld, K. V. G. K. Murty, Juris Prikulis, and Mikael Kall, "Laser-Induced Growth of Ag Nanoparticles from Aqueous Solutions", Chem. Phys. Chem. 3, 1, 116-119 (2002).
- [3] Tommaso Baldacchini, Anne-Cecile Pons, Josefina Pons, Christopher N. LaFratta, and John T. Fourkas, "Multiphoton laser direct writing of two-dimensional silver structures", Opt. Exp. 13, 4, 1275-1280 (2005).
- [4] Shoji Maruo and Tatsuya Saeki, "Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix", Opt. Exp. 16, 2, 1174-1179 (2008).
- [5] Yuan-Yuan Zhao, Mei-Ling Zheng, Xian-Zi Dong, Feng Jin, Jie Liu, Xue-Liang Ren, Xuan-Ming Duan, and Zhen-Sheng Zhao, "Tailored silver grid as transparent electrodes directly wrriten by femtosecond laser", Appl. Phys. Lett. 108, 221104 (2016).