レーザ加工技術を援用した 長寿命大型溶接構造物建造技術に関する研究

九州大学 大学院工学研究院 海洋システム工学部門
教授 後藤 浩二
(2018 年度 一般研究開発助成 AF-2018206-B2)

キーワード:レーザ照射,結晶粒微細化,応力集中緩和,疲労

1. 研究の背景と目的

船舶・海洋構造物,橋梁,鉄道車両,高層建築鉄骨構造 等,多くの大型構造物の損傷形態は応力集中部を起点とす る場合が大半である.日本機械学会による機械・構造物の 破損事故例の分類によれば,損傷事故の8割以上に疲労が 深く関わっていることから,大型構造物における疲労損傷 事故を防止することは,豊かでかつ安全な社会活動を営む ために,極めて重要な課題である.大型溶接構造物中には 応力集中源である溶接継手が多数内在していることに加 え,母材性能が改善しても疲労強度の改善には寄与しない という広く知られた事実がある.溶接継手の疲労強度改善 を目的とした耐疲労鋼も開発されているが,耐疲労性能の 劇的な改善には至っていない.

金属材料の強度と靭性を同時に改善可能な手法は結晶 粒微細化のみであるが、西尾ら¹⁾は、軟鋼板にレーザ照射 を繰り返し、照射部近傍温度履歴が A3 変態点を跨ぐ前後 となるようにすることで、結晶粒が微細に均一化すること を示している.ただし西尾らの方法では、金属を溶融させ ないように小入熱のレーザ照射を複数回付与するように している.一方、金属表面を溶融させないレーザ照射条件 を与えることは必ずしも容易ではない.著者らは、大型構 造物の強度部材として使用される通常鋼を評価対象とし て、西尾らの方法に沿って、材料表面を完全に溶融させな い結晶粒微細化を試みたが、適切な条件を導出することは 困難であった.

この結果を考慮し,表層部の溶融は許容する立場を採用 することにしたが,表層部の溶融を許容すると,逆に以下 の点で有利なことが期待される.

- (1) 大型溶接構造物で生じる損傷の多くは、溶接止端部 を起点とする疲労破壊である.そこで、溶接止端部 にレーザ照射処理を施して結晶粒微細化効果を付与 しようとすれば、TIG ドレッシング処理と同様に溶 接止端形状が滑らかなることから、応力集中が緩和 して溶接継手の疲労強度に対して有利に働く.
- (2) 表層部が溶融するということは、付与される熱履歴の観点から、表層より一定距離深い箇所の結晶粒が 微細化される.船体の船倉部やバラストタンク部を 考えると、経年に伴う腐食や積載時の(バケットな どの衝突に相当する)グラブ荷重等の影響で表層部

は深刻なダメージを受け、場合によっては剥がれ落 ちてしまうこともある.長期に渡って疲労強度を良 好に保持することを考えると、応力集中の影響が低 下する表層部よりも深い箇所に結晶粒微細化効果を 付与するほうが望ましい.

一方,申請者は従来のアーク溶接と比べて優れた継手品 質を有し,かつ大型構造物建造に適用される板厚やギャッ プ裕度にも対応可能と期待されるレーザ・アークハイブリ ッド溶接技術を船体構造の建造に適用するため,様々な検 討に取り組んできた³⁾.その成果の一つとして,大型溶接 構造物中に多数存在するすみ肉溶接継手を,ハイブリッド 溶接により片側からの1パス完全溶込み継手に置き換え ることを考え,長尺溶接にも対応できる施工条件を確立す るとともに,溶接変形や疲労強度の面での優位性を確認し ている.この置き換えを達成できれば,強度要件を満たし つつ,より軽量の構造物の製造が可能となる.また,上述 のハイブリッド溶接による継手の溶接止端に表面近傍の 溶融を許容するレーザ照射処理を施せば,従来のアーク溶 接による溶接継手と比較して長期の稼働期間において優 れた疲労寿命を有する継手の製造が可能となる.

本研究では、上述の研究背景に基づき、溶接止端部に対 する表面溶融を許容する適切なレーザ照射条件について 検討するとともに、疲労強度改善効果に関しても検討を実 施した.実験には申請者の研究室が所有するレーザ・アー クハイブリッド溶接実験装置を活用し、レーザ光路上に意 図するガス雰囲気を形成するため、アークトーチからガス のみを噴出するなどの工夫を行った.

2. レーザ照射条件に関する検討

2.1 実験条件と方法

最初に、レーザ照射条件と結晶粒微細化の関係性に関す る知見の蓄積を目的に、レーザ照射時の雰囲気ガスおよび レーザ照射回数が溶込み形状と結晶粒の微細化の度合い に与える影響を確認した.

実験方法は、レーザ光路上に CO2 ガス雰囲気を形成し た状態で照射を行った.レーザヘッドは試験体とほぼ垂直 に配置した.供試材は板厚 14 mm の KD36 鋼(船級協会 承認を有する降伏応力 36 kgf/mm²級の低炭素鋼)である. 表面性状は防錆プライマを剥離し、フライス加工により黒 皮を切削した.レーザの照射条件を表1に示す.レーザ移 動速度は全て 600 mm/min とした.

衣丨	武駛禾件		
試験 ID	1	2	3
レーザ出力 (kW)	0.3	2.	.6
デフォーカス距離 (mm)	5	10	15

表1 試験条件

試験 ID 1 は試験体表面を溶融させないことを想定した 照射条件, ID 2 は溶込みの深いキーホール型の溶融形態, ID 3 は ID 2 からデフォーカス距離のみを大きくし,幅広 の溶融形態となることを想定した照射条件である.また, 上記 ID 1~3 において,照射回数の影響を検討するため, 大気中(ガス無し)の条件下で,レーザ照射回数を4回と した実験及びレーザ光路上が大気まま(CO2 ガスパージ 無し)での実験も行った.

2.2 実験結果

レーザ照射後の試験体を適切な大きさに切り出し、ベル トサンダーを用いて粒度#1000まで研磨後、4%ナイタール でエッチングを行い、断面をアセトンで洗浄した試験片に ついてマクロ断面観察を行った.照射影響により母材部と 組織の様相が異なった領域および溶融域の計測結果、微細 化が顕著な領域における粒径計測結果、変質部と母材部の 境目を 0.1 mm の間隔で測定したビッカース硬さ試験の結 果を表 2 に、1 回照射試験片のマクロ断面の写真を図 1 に 示す. ID2とID3においては、大気中照射と比較して CO2 雰 囲気中照射では溶融および変質域の幅が増大した.この理 由は、CO2 雰囲気中では大気中よりも表面活性元素である 酸素の量が溶融部において少ないために、表面張力対流が 変化した影響を受けたと考えられる.ID2は溶込みが深い ため表面近傍でのみ溶融地内の対流の変化が影響した結 果、表面付近の溶融および変質域の幅が増加したものと考 えられる.照射回数を重ねることで、ID1とID2では幅 方向に、ID3では深さ方向に顕著に溶融および変質域の増 大が確認された.

金属結晶粒径について,全ての条件で結晶粒の微細化が 確認された.一方で,全ての条件でCO2雰囲気中照射(ID B)では大気中照射(IDA)と比較して粒径がわずかに大 きくなるという傾向が確認された.また,照射回数4回 (IDC)の方が1回(IDA)と比較して粒径が小さく出て おり,照射回数の増加に伴い微細化が促進される傾向が確 認された.西尾らの研究においても同様の傾向が報告され ている.熱伝導型の溶融形態を想定した ID3の照射条件 はキーホール型の溶融形態を想定した ID2から得られた 試験片より全体的に粒径が小さく出ており,微細化効果が より大きくなることが示唆される.

母材部の硬さの平均は, KD36 では 190 HV であり, 平 均結晶粒径は 10.4 μm であった. いずれもボンド部もしく はその近傍で最高硬さを確認した.

		ガ		レーザ照身	寸影響範囲	溶融	範囲	JT 14	ビッカ
討 I	験 D	ス雰囲気	レーザ 照射回数	最大幅 (mm)	最大深さ (mm)	最大幅 (mm)	最大深さ (mm)	平均 結晶粒 直径 (µm)	ース 硬さ 最大値 (HV)
	Α	Air	1	0.97	0.47	0.68	0.39	2.8	499
1	В	CO ₂	1	0.89	0.39	0.67	0.31	3.1	462
	С	Air	4	1.13	0.50	0.75	0.40	2.4	495
	Α	Air	1	4.12	4.07	2.94	3.77	3.6	441
2	В	CO_2	1	5.09	4.03	4.02	3.45	4.0	430
	С	Air	4	4.66	4.21	3.44	3.89	2.8	431
3 1	A	Air	1	3.15	2.63	2.06	2.21	2.4	445
	В	CO ₂		4.96	2.74	3.83	2.49	3.6	419
	С	Air	4	3.20	2.83	2.10	2.51	2.3	462

表2 断面マクロ観察による測定結果と硬さ測定結果

図1 断面マクロ

3. 表面溶融無しでの結晶粒微細化条件探索

3.1 実験条件と方法

前章に示したレーザ照射実験では、いずれも鋼材表面の 溶融が確認された.表面の溶融を許す場合、結晶粒の細粒 部自体は照射影響部内に存在するが、同時に溶融部と細粒 部の間に粗粒域が発生する.この領域では亀裂進展速度が 母材原質部よりも速くなるため、全体で見ると疲労強度の 有意な向上効果が得られない恐れがある.このことから、 レーザ照射点における亀裂の発生ならびに進展抑制のた めには鋼材(照射点)表面を溶融させずに一定以上の深さ で結晶粒を微細化させる必要がある.

そこで、レーザ出力、デフォーカス距離、照射速度を変 更しながら複数の条件でビードオンによるレーザ照射施 工を実施し、適正な照射条件を探索した.なお、建造中の 構造物への適用を念頭に、照射回数は1回に固定した.

2.で説明した実験ではレーザヘッドを鋼材と垂直に配 置したため,鋼材表面におけるレーザの熱源形状は,ほぼ 円形であったため,熱源強度分布はガウス分布に近い状態 であり,円形状の中心で熱源強度は最大となる.そこで本 検討では,照射角度を移動方向と平行に傾斜させることで 鋼材表面の熱源形状は楕円形状とした.この結果,熱源集 中度が緩和されるため,鋼材表面の溶融防止が期待される.

表3にはレーザ出力,デフォーカス距離,移動速度の照 射条件とこれらの照射条件に基づいて,式(1)により計 算したエネルギ密度を示す.式(1)は熱源形状が円であ る場合の式であるので,レーザ照射に角度をつけた際のレ ーザ熱源形状はやや楕円型となり厳密には異なるが簡便 さを優先し,近似ではあるがこれを適用することにした.

$$E = \eta W / v \phi \tag{1}$$

ここで,

- E: エネルギ密度 (J/mm²),
- *η*: 熱効率,
- W: レーザ出力 (W),
- *v*: *レ*ーザ照射移動速度 (mm/s),
- *ϕ*: レーザスポット直径 (mm).

表 3 表面の結晶粒微細化を検討するためのレーザ照射 条件

ID	レーザ出力	デフォーカ	移動速度	エネルギ密度
	(kW)	ス距離 (mm)	(mm/min)	(J/mm ²)
1		50		6.74
2		60	2,000	5.62
3	1.04			4.82
4	1.04	-	1,700	5.67
5			1,000	1,000
6			600	16.1
7				6.54
8	1.41		1,800	7.27
9		_	1,400	9.34
10		_	1,000	13.1

3.2 実験結果

図 2 には本実験で得られた微細化領域のミクロ観察写 真の一部と,比較のために母材の金属結晶粒ミクロ観察写 真を示す.

(a) 実験 ID 2 で得られた微細結晶

(b) 母材原質部図2 マクロ観察(赤線の長さ50 μm)

図3 表層からの深さと結晶粒系の関係(ID7, ID8)

本章に示すレーザ照射条件での結果は、表面の溶融がほ とんど無く結晶粒微細化を達成していることを確認した. 一方,1.でも述べたように、長期稼働期間に渡って疲労強 度の健全性を担保するには、表層部ではなく、ある程度の 深さ位置において結晶粒微細化を達成することが必要で ある.本研究を実際の大型構造物建造に付加的に適用する ことを考慮すれば、深部までレーザ照射効果が届き、かつ レーザ照射時間が短時間であることが望ましい.そこで、 表3に示す実験の中でこれらの条件を満たすと思われる 施工条件のID7とID8に着目し、微細化効果の及んでい る深さを調査した.図3に結果を示すが、表面から0.3 mm 程度深くなった段階で微細化効果は消失し,母材の金属結 晶粒径と同等な大きさにとどまることを確認した.

4. すみ肉溶接止端部に対するレーザ照射

4.1 実験条件と方法

本章では、溶接継手へのレーザ照射効果による、溶接止 端部近傍の結晶粒微細化効果及び止端半径に起因する応 力集中の緩和効果を検証する.

表4に示す溶接施工条件で,図4に示すすみ肉溶接によるT継手を製作し,この溶接止端部(主板側)に対して表5に示す条件でレーザ照射を行った.レーザ照射速度は溶接施工速度と同じ600mm/minとした.

表4 T約	継手製作の溶	接施工条件
電流(A) :	373
電圧(V) :	31.7
溶接速	度(mm/min)	: 600

図4 T継手

スリレッ 派和本任					
	デフォーカス	エネルギ密度			
ID		距離 (mm)	(J/mm ²)		
1		15	172		
2		30	89		
3	2.5	45	60		
4		60	45		
5		90	30		
6		15	343		
7		30	178		
8	5.0	45	120		
9		60	90		
10		90	60		

レーザ照射の前後で溶接止端部の形状を三角測距方式 二次元レーザ変位計(KEYENCE LJ-V series)とスライド 方向に座標間隔が均一なリニアエンコーダシステム (RENISHAW Tonic T100x RGSZ)を組み合わせて用いる ことで測定し、止端半径ならびにフランク角等の幾何形状 を得た.測定は、溶接線方向中央の100mmにおいて間隔 0.2mm(500点)で形状を計測し、各パラメータの分布と 平均を計測した.

表5 レーザ照射条件

4.2 実験結果

各照射条件における止端半径およびフランク角の平均 を図5に、立板・主板側の脚長の平均を図6に示す.加え て、辻³⁾による非荷重伝達型隅肉継手止端部に対する応力 集中推定式を用いて曲げを受ける T 継手の形式に対して 応力集中係数 K_tを算出し、結果を図7に示す.

図5に示す結果から,止端半径およびフランク角いずれ もデフォーカス距離 D_fを大きくする程増大する傾向を確 認した.しかしながら,一部の照射条件でその傾向から逸 脱している場合もある.この原因として,すみ肉溶接のビ ード形状のバラツキを考慮せず一律にレーザ照射したこ とが狙い位置のずれなどを引き起こした可能性が考えら れる.しかしながら,いずれの場合もデフォーカス距離 D_f を大きくとるほど応力集中係数 K_tは減少傾向にあり,効 果的な形状緩和効果を得るためにはデフォーカス距離を 大きくとることが望ましいと考えられる.

5. 疲労強度改善に関する検討

5.1 実験条件と方法

溶接止端部に対するレーザ照射による疲労強度改善効 果を継手製造時に付与することを目的に,継手製造に資す るアーク溶接に対してタンデム方式でレーザ照射を行う こととした. すなわち, アーク溶接後生成される溶接止端 位置を予測したうえでレーザ照射位置を決定し, 生成され た溶接ビードを被覆するスラグを除去することなくアー ク溶接とほぼ同時にレーザ照射施工した. アーク溶接の施 工条件は4.の表4であり, レーザ照射の施工条件を表5の ID 2 と ID 3 である. これらの施工条件により製作した継 手の ID を順に F1, F2 とする. また, 疲労強度の比較検討 のため, アーク溶接のみ施工・レーザ照射無しの継手も製 作した. この継手の ID を F3 とする.

5.2 レーザ照射による止端形状改善

レーザ照射後のそれぞれの継手に対して、溶接止端半径 及びフランク角を測定した.また、4.2 と同様に辻の式に より応力集中係数も算定した.これらの結果を表6に示す が、レーザ照射による応力集中の緩和を確認できる.参考 のため、レーザ照射した溶接止端部の断面マクロ観察写真 を図8に示す.

表6 レーザ照射後の溶接止端形状等

ID	止端半径 (mm)	フランク角 (°)	応力集中係数
F1	3.16	20.2	1.53
F2	2.17	22.2	1.65
F3	1.04	38.8	2.33

図8 レーザ照射した溶接止端部の断面マクロ観察

5.3.疲労強度に関する検討

上記の継手 F1~F3 から三点曲げ疲労試験片を複数体製 作して疲労試験を実施した.結果を図9に示す.同図には すみ肉溶接継手に対する複数の疲労設計線図(IIW FAT100, FAT80, JSSC Class E)も示すが,これらとの比較結果より, レーザ照射を行うことによる疲労強度の改善が確認でき る.これは,溶接止端部へのレーザ照射による止端形状の 変化にともなう応力集中の緩和が主な要因と考えられる. 結晶粒微細化の効果の定量的な確認のためには,疲労亀裂 成長履歴を確認し,微細化領域での伝播速度低下を確認す る必要があるが,今回はこの確認には至っておらず,将来 課題と考える.なお,全ての試験片において,疲労亀裂は レーザ照射端部より発生した.

6. 結論

本研究では,溶接止端部にレーザ照射することで,溶接 止端部の応力集中緩和及び内部組織の結晶粒微細化を同 時に処置し,溶接継手の疲労強度を改善する目的に資する レーザ照射条件の探索を行った.

その結果,実際の大型溶接構造物建造時に同時にレーザ 照射することを前提とした照射条件を導出し,疲労強度の 大幅な改善を確認した.一方,板内部の結晶粒微細化効果 が疲労寿命改善効果に及ぼす定量的検証には至っていな いため,これを検証するための疲労亀裂伝播試験方法の検 討等が将来課題であろう.

謝辞

疲労試験の実施に際して,(国研)海上技術安全研究所 の穴井陽祐氏にご協力を賜りました.ここに記して御礼申 し上げます.

参考文献

- 西尾 一政 他:レーザ照射による結晶粒の微細化, 機能材料, Vol.27, No.7, pp.56-60, 2007.
- 2) 例えば, Gotoh, K. et al.: Fundamental Studies on Application of Laser-Arc Hybrid Welding for Manufacturing Primary Structural Members in General Merchant Ships, Proceedings of the 8th International Congress on Laser Advanced Materials Processing (LAMP 2019), May 2019.
- 辻勇:非荷重伝達型すみ肉溶接継手の止端部の応力 集中係数の推定式,西部造船会会報,No.80, 1990, 241-251.