フェムト秒レーザプロセシングによる 単細胞操作チップの開発

奈良先端科学技術大学院大学 先端科学技術研究科
教授 細川 陽一郎
(平成 28 年度 一般研究開発助成 AF-2016225)

キーワード:バイオ応用,マイクロ流体チップ,ガラス加工,セルソーター

研究の目的と背景

近年のバイオイメージング技術の発展に伴い,その対象 は細胞集団から1細胞となり、細胞ごとの構造や機能の理 解が進んできている.動物細胞の典型的なサイズは10μm 程度であり、現在、その空間スケールのマイクロ流体チッ プの中で細胞を自在に配列制御し,操作できる技術がバイ オ研究者から望まれている、細胞は主に、プラスチック(ポ リスチレン)もしくはガラスなどの細胞培養基板で培養さ れる. 顕微鏡下で集光したフェムト秒レーザを用いること により、これらの透明材料を3次元的に、かつ比熱的に加 工できる.我々は薄膜ガラスをフェムト秒レーザにより、 加工してマイクロ流体チップを形成する方法を提案して きている(1-4). さらには、細胞培養基板上にポリマーや単 分子膜を塗布し、フェムト秒レーザにより改質することで、 基板上での細胞の遊走や細胞間相互作用を制御できるこ とを示してきている(5).本研究では、上記の背景を鑑み、 フェムト秒レーザプロセスを駆使した新規なマイクロ流 体チップの開発を推進した.

特に近年,1細胞を対象としたセルソーターにマイクロ 流体チップ技術を応用しようとする試みが注目されてい る.セルソーターにおける効果的かつ高スループットな細 胞選別は,生物学,医療工学,ヘルスケア工学および臨床 応用における単細胞分析の重要な技術となっている.これ までに,蛍光活性化セルソーティング(FACS)^(の)や磁気活 性化セルソーティング(MACS)^(7,8)などがあるが,これら の手法は細胞に標識を付けたり,多量な試薬,及び試薬汚 染のリスクなどの問題点があり,その解決策として,マイ クロ流体デバイスを用いた細胞分取が注目されている⁽⁹⁾.

マイクロ流体チップ中のマイクロ流路内で細胞を操作 (分離)する方法は、大きく2種類に大別され、流路の形状 を工夫して流路内の流れを制御し細胞を操作する方法 (Passive method)と、流路に外力作用させて細胞を操作す る方法 (Active method)がある. Passive method は大量の 細胞を高速に分離できるが、個々の細胞の複雑な操作は難 しい. Active method は、外部制御により柔軟に一つずつ の細胞を操作でき、特にサンプル中の希少な細胞の操作に 適していると考えられる. 我々は、Active method による 細胞操作の外力として、フェムト秒レーザ誘起衝撃力とマ イクロ流体デバイスを組み合わせたシステムに注目し、こ れまで研究開発を進めている⁽¹⁰⁻¹²⁾. 図1にそのシステム構成を示す.マイクロ流体デバイ ス内のマイクロ流路上に細胞検出用のレーザと細胞操作 のための外力を発生するためのフェムト秒レーザが導入 されている.マイクロ流路は分岐を持ち,標的細胞が検出 された際,フェムト秒レーザ誘起衝撃力により,回収用の 流路(図中の Collection)に誘導される.このようなマイ クロ流体デバイス中での高精度な細胞操作を実現するた めには,流路内で細胞を如何に整列させるかがキーテクノ ロジーとなる.本研究では,フェムト秒レーザによりガラ ス製流路の下面に付加加工を施し,細胞を流路の特定位置 に収束させる方法を検討した.

図1 フェムト秒レーザ誘起衝撃力を用いた細胞分取の 概略図

2. 実験方法

マイクロ流路を加工するためのフェムト秒レーザ実験 システムを図2に示す.レーザ光源として,再生増幅器付 きフェムト秒チタンサファイアレーザシステム (Solstice, Spectra-Physics, 100fs, 800 nm, 1 kHz)を用いた.ガラス基 板を倒立顕微鏡 (IX71, Olympus)の電動ステージ上に配 置し,フェムト秒レーザを10倍の対物レンズ (NA. 0.25) により流路の下面に集光して加工した.電動ステージと機 械式シャッターをコンピューターにより制御し,流路の下 面に任意の溝パターンを形成した.ガラス基板 (スライド ガラス)を電動ステージに乗せ,100 µm/sの速度でスキ ャンし,1.0 µJ/pulse,1.4 µJ/pulse, 2.8 µJ/pulse のレーザパル スエネルギーで溝構造の加工条件を検討した.

3. 実験成果

3. 1 ガラス基板のフェムト秒レーザ加工

作製した溝構造の形状を電子顕微鏡(SEM)で観察し, 加工溝の幅と深さを測定した.パルスエネルギーごとの加 工溝の幅と深さの測定結果を図3(a)に,溝の断面のSEM 像を図3(b)に示す.図3(a)に示すように,加工溝の 幅はそれぞれの条件で約3µmであり,レーザパルスエネ ルギーにほとんど依存しなかった.深さは1.0µJ/pulseで 約3µm,2.8µJ/pulseで約10µmであった.2.8µJ/pulseの 時,1.0µJ/pulseの時の約3倍となった.この結果は,パ ルスエネルギーに依存する自己集束効果により,溝の深さ を調節できることを示唆している.

図3 フェムト秒レーザによるガラスの溝加工. (a) 左図はエネルギーごとの加工溝の幅の比較,右図は深 さの比較を示す. 各N数:20. (b) 加工溝の断面の SEM像(1500倍).

3. 2 マイクロ流路の溝パターンの検討

流路内で細胞を収束させるための溝パターンとして, 流路(幅 50 μ m, 高さ 10 μ m)内に 1 μ m の間隔で,連続 した「く」の字パターンを作製した.

図4に示すように、「く」の字パターンは、流路の進行 方向に対して、30度、45度、60度と角度を変え、それぞ れの角度に対し、異なる間隔のパターンを三つ用意した. パターン形成後、加工時に発生したデブリなどを除去する ために、エタノール、窒素フローを吹きかけ洗浄し、電気 炉により580度で約5時間のアニール処理を行った.

作製した各パターンの全長は 1 mm であり, その中での 溝間隔を 5 μ m, 10 μ m, 20 μ m に調整し, さらに角度, 深 さ, 流速の異なる「く」の字パターン構造をもつ試料を準 備した.またレーザパルスエネルギーを 1.0 μ J/pulse と 2.8 μ J/pulse で加工し, 溝パターンの深さを調整した.これら の「く」の字パターン構造を通過する前後のポリマー微小 球 (直径 20 μ m)の挙動を図 5 に示す実験系により観察し, 評価した.

図5 加工されたマイクロ流体デバイスを流れる微小球 の挙動観察のための実験概略図 作製した各パターンの全長は1mmであり、その中での 溝間隔を5 μ m、10 μ m、20 μ mに調整し、さらに角度、深 さ、流速の異なる「く」の字パターン構造をもつ試料を準 備した.またレーザパルスエネルギーを1.0 μ J/pulse と 2.8 μ J/pulse で加工し、溝パターンの深さを調整した.これら の「く」の字パターン構造を通過する前後のポリマー微小 球(直径 20 μ m)の挙動を図5に示す実験系により観察し、 評価した.

図6にまとめられるように,角度の小さい,溝の深さの 深い,流体の流速の低いパターンで,集束効果が高い傾向 が示された.これらの結果から,マイクロ流路内を流れる 微小球の挙動は,流路内の「く」の字溝構造パターンの角 度,深さ,流体の流速により影響されることが示された.

図6 微小球の集束効果の角度,溝深さ,流速依存性 (a) 流速6 mm/s, 深さ10 µm,間隔10 µm で角度依存性. (b) 流速6 mm/s, 30 度の「く」の字パターン,溝間隔10 µm で深さでの依存性. (c) 30 度の「く」の字パターン, 深さ10 µm, 間隔10 µm での流速依存性.

3.3 マイクロ流路内の微細構造による細胞操作

図5のシステムに、集束傾向の高い深さ10µmの30度の「く」の字パターン(溝間隔5µmと10µm)を加工したマイクロ流体デバイスを配置し、細胞を用いた実験をおこなった.細胞として、直径2-10µmの藻類細胞であるクロレラを用いた.流速6mm/sで、クロレラ含む試料溶液をデバイスに導入した結果を図7に示す.「く」の字パターンを通過する前後のクロレラの位置を高速カメラで撮影した結果、溝間隔が5µmのとき、流路の中央付近へ、クロレラが導かれる様子が確認できた.溝間隔が10µmのとき、集束が見られなかった.クロレラのサイズは、図7で検討した微小球のよりも小さく、密度の高い構造でのみ集束効果がみられたと考えらえる.

図7 溝パターン通過前後のクロレラの位置を示す 高速カメラ像

4. 結言

本研究では、フェムト秒レーザ誘起衝撃力とマイクロ流 体デバイスを用いた細胞分取システムの性能向上を目指 し、既存の整列手法と組み合わせることが可能である流路 内微細加工による配列手法を提案し、検討した.流路内を フェムト秒レーザ付加加工したマイクロ流体デバイスを 作製し、微小球とクロレラの挙動について観察した結果、 流路内の溝構造によりこれらを集束させることができる 可能性を見出した.

本研究では、ガラス製のマイクロ流体デバイスに、フェ ムト秒レーザにより加工を施したが、ガラス材料およびそ の加工プロセスをさらに検討することにより、その性能向 上が見込まれる.例えば、HFや HNO3に用いて、加工し きい値以下のフェムト秒レーザをガラス材料に照射し、ウ ェットエッチングを行った場合、レーザ照射により物性変 化が生じた個所が速くエッチングされることが知られて いる.さらに、この現象を用いて直径数 µm のマイクロチ ャネルを3次元的に加工できることが報告されている. 既存マイクロ流体デバイスの作製ではフェムト秒レー ザ加工技術は補足的な加工手法であり、マイクロ流体デバ イス自身の作製に向いてない.しかし,既存手法で作成し たマイクロ流体デバイスに簡便かつ迅速に付加加工を行 う方法としては有効である.今後,さらなる性能向上に向 けたフェムト秒レーザを利用した、マイクロ流体デバイス の付加加工プロセスの検討を進めていく.

謝 辞

本研究は、公益財団法人天田財団の一般研究開発助成 AF-2016225 によっておこなわれたものであり、ここに感 謝の意を表します.本研究の実施にあたり、ご協力いただ きました Yalikun Yaxiaer 先生、岡野和宣先生、研究室学生 の名本美寿氏、方超穎氏に感謝申し上げます.

参考文献

- Y. Yalikun, Y. Hosokawa, T. Iino, Y. Tanaka: An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing, Labo. Chip, **16**, (2016) 2427-2433.
- Y. Yalikun, N. Tanaka, Y. Hosokawa, T. Iino, Y. Tanaka: Ultrathin glass filter fabricated by femtosecond laser processing for high-throughput microparticle filtering, Appl. Phys. Express, 9, (2016), 066702.
- Y. Yalikun, N. Tanaka, Y. Hosokawa, T. Iino, Y. Tanaka: Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter, Biomed. Microdevices, 19, (2017), 85.
- N. Ota, Y. Yalikun, T. Suzuki, S. W. Lee, Y. Hosokawa, K. Goda, Y. Tanaka: Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device, Royal Soc. Open Sci., 6, (2019), 181776.
- 5) K. Okano, A. Matsui, Y. Maezawa, P-Y. Hee, M. Matsubara, H. Yamamoto, Y. Hosokawa, H. Tsubokawa, Y-K. Li, F-J. Kao, H. Masuhara: In situ laser micropatterning of proteins for dynamically arranging living cells, Labo. Chip, **13**, (2013), 4078-4086.

- H. R. Hulett, W. A. Bonner, R. G. Sweet, and L. A. Herzenberg: Development and Application of a Rapid Cell Sorter, Clinical Chemistry, 19, (1973), 813–816.
- S. Miltenyi, W. Müller, W. Weichel, A. Radbruch: High Gradient Magnetic Cell Separation With MACS, Cytometry, 11, (1990), 231-238,
- T. M. Said, A. Agarwal, S. Grunewald, M. Rasch, H.-J. Glander, U. Paasch: Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation, RBMO, 13, (2016), 336-339.
- Y. Shen, Y. Yalikun, Y. Tanaka: Recent advances in microfluidic cell sorting systems, Sens. Actuators B Chem, 282, (2019), 268-281,
- 10) N. Nitta, T. Sugimura, A. Isozaki, H. Mikami, K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki, H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito, H. Karakawa, Y. Kasai, K. Koizumi, S.W. Lee, C. Lei, M. Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T. Ota, K. Shiba, H. Shintaku, Y. Shirasaki, K. Suga, Y. Suzuki, N. Suzuki, Y. Tanaka, H. Tezuka, C. Toyokawa, Y. Yalikun, M. Yamada, M. Yamagishi, T. Yamano, A. Yasumoto, Y. Yatomi, M. Yazawa, D. Di Carlo, Y. Hosokawa, S. Uemura, Yasuyuki Ozeki, K. Goda, et al.: Intelligent Image-Activated Cell Sorting, Cell, **175**, (2018), 266-276.
- T. Iino, K. Okano, S. W. Lee, T. Yamakawa, H. Hagihara, H-Z. Yi, T. Maeno, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Ozeki, K. Goda, Y. Hosokawa: High-speed microparticle isolation unlimited by Poisson, Labo. Chip (2019) will be accepted.
- 12) Z-Y. Hong, K. Okano, D. Di Carlo, Y. Tanaka, Y. Yalikun, Y. Hosokawa: High-speed micro-particle manipulation in a microfluidic chip by directional femtosecond laser impulse, Sens. Actuators (2019) will be accepted.