結晶配向を利用したセラミックスの高温塑性変形能付与

物質•材料研究機構 機能性材料研究拠点 グループリーダー 鈴木 達 (平成 28 年度 一般研究開発助成 AF-2016024)

キーワード: 強磁場, 結晶配向, スリップキャスト, 電気泳動堆積法

研究の目的と背景

1986年にセラミックスでの超塑性発現がジルコニアに て日本から初めて報告され、その後、結晶粒微細化、分散 粒子などによる粒成長抑制、拡散促進元素の添加、焼結欠 陥の低減を行うプロセスの改善などを用いて、より速く、 より延びて、さらにより低温で変形させることを目的とし て超塑性セラミックスの開発が行われている。実用的な条 件での超塑性がセラミックスにおいて実現すれば、ネット 成形および固相接合が期待される。これは、切削加工を必 要とせず、信頼性の低下を招く表面欠陥の導入を回避でき るメリットが期待でき、セラミックスの弱点である信頼性 を向上する一翼を担う技術となる。報告者らは、セラミッ クス創製における液相プロセスにおいて、スラリー中での 粒子の分散を制御するコロイドプロセスを用いることに より、細孔径が細かく揃った成形体を造り込むことに成功 し、この成形体の低温焼成により微細結晶粒からなるジル コニア分散アルミナを創製し、世界で初めてアルミナ基セ ラミックスでの超塑性を達成している。しかし、アルミナ 単相では動的粒成長を抑制することが難しく、10%程度の 高温変形が限界であり、大きな塑性変形能を得ることは出 来ていない。

図1. 粒界すべりによる超塑性変形のモデル(多結晶体 に上下方向に応力 σ を付加すると、個々の結晶粒は粒 界すべりを起こし、引張り方向にお互いの位置を入れ 替えて再配列され、全体として大きな伸びを得る。)

(d) 変形後

(a) 変形前

セラミックスの高温での塑性変形は、図1に示すように 粒界すべりにより担われており、その粒界すべりで生じる 粒界近傍での不整合を緩和する機構の作用により、キャビ ティーの発生が抑えられ大きな伸びを得ることが可能と なる。よって、粒界すべり、および緩和機構を促進するこ とは、大きな塑性変形を得るために重要となる。通常は、 組織粒の微細化により粒界すべりを促す、または、元素添 加による拡散の増進などを行うことで超塑性特性の改善 を図る。

本研究においては、粒界すべりの促進のために、粒界方 位に着目した微構造制御を行うことで、その塑性変形への 影響を検討した。また、高温変形試験に供するための配向 多層構造をもつ緻密なアルミナと炭化ケイ素を作製した ので報告する。

2. 実験方法

2・1 強磁場を用いた結晶配向

結晶方位を制御することにより粒界での方位制御を試 みた。金属材料では加工・再結晶などの手法を用いて精緻 な集合組織制御が可能であり、その技術も既に高度に発達 しているが、これら集合組織制御手法を脆性材料であるセ ラミックスへ適用することは難しい。セラミックスの配向 制御方法としては、テープキャストなどで配向させた形状 異方性粒子をシードとして粒成長させる TGG 法、ホット プレスやホットフォージングによる方法、一軸押し出し成 形する方法等が行われている。これらの手法を用いること で高い配向性を得ることが可能であるが、板状粒子などの 形状異方性粒子の作製に制約される。また、基本的にはせ ん断力等を用いるために形状が限定され、形状に対する配 向方位を任意に設定することが難しく、部材形状に対する 配向方位が限られてしまうのが現状である。本研究におい ては強磁場を用いた結晶配向手法を用いた。鉄などの強磁 性体が外部磁場に影響を受ける物質であることは周知の 事実であり、フェライトなどの強磁性体における磁場によ る結晶配向制御は良く知られた方法である。それに対して、 Al₂O₃、AlN、TiO₂などの反磁性体、常磁性体では、その 磁化率が極めて小さいことから磁場の作用を受けない物 質(いわゆる非磁性物質)として扱われることが通常であ り、磁場による配向などの組織制御は出来ないとするのが 常識的な考えであった。しかしながら、報告者のグループ では、液相中で分散させたセラミックス微粒子に強磁場を 印可することにより、微粒子を回転させながら成形するこ とで結晶配向制御が可能であることを報告している¹⁻³。 磁気による粒子の回転は結晶磁気異方性に起因する磁気 トルクの発生により起こる。その結晶構造が、正方晶、六 方晶のような非対称な構造であるならば、結晶軸方向に依 存した磁化率に異方性が存在し、その異方性と磁場の相互 作用により式(1)で与えられる磁気トルクが生じ、磁化エ ネルギーを安定にする方向へ粒子を回転させる。

$$T = -\frac{\Delta \chi V B^2}{2\mu_0} \sin 2\theta \tag{1}$$

ここで、Bは磁場強度、 μ_0 は真空の透磁率、 $\Delta\chi$ は異方性磁

化率(磁化容易軸と磁化困難軸との磁化率の差)、θは磁場 と磁化容易軸のなす角である。各軸の磁化率がχa>χcであ り、a軸が磁化容易軸ならば a 軸と磁場印加方向が平行と なり、χc>χaでその逆ならば c 軸が磁場印加方向と平行と なるように結晶は回転する。しかしながら、強磁場といえ ども反磁性・常磁性セラミックス粒子を回転させるに十分 大きなトルクを得ることは難しいため、粒子の回転のしや すさも重要となり、コロイドプロセスなどによりスラリー 中の微粒子分散制御の様な粒子を回転させやすくする操 作が必要となる。

図2. 磁場中成形による結晶配向制御

図2に示すように、粒子の分散制御を行ったスラリーを 用いて磁場中でスリップキャストにより固化成形を行う。 また、図3に示すように電気泳動堆積(EPD)法を用いる ことで、積層構造制御も行った。EPD法は、帯電したセ ラミックス粒子のスラリーに電極を浸漬、電場を印加する ことにより、粒子を任意形状の電極基板上に直接堆積させ る固化成形方法であり、近年では積層体や傾斜組成材料な どの新規なセラミックスコンポジットの作製方法として 注目されている。このEPDを磁場中で行う時に、電場(基 板)と磁場方向を任意の角度にセットすることにより基板 に対して任意の結晶方位を配向させることが可能となる。

図 3. 磁場中 EPD の模式図と基板と磁場方位による配向 制御モデル

2・2 強磁場配向用スラリーの調製

強磁場配向プロセスでは、溶媒中で個々の粒子が分散し て回転しやすい状態にあることが重要である。微粒子同士 は相互作用引力となるファンデルワールス力が大きくな り凝集しやすいために、粒子の表面電荷を制御して分散さ せる必要がある。そのために分散剤として作用する電解質 を表面に吸着させる、または溶媒のpHを制御して表面電 荷を高めることを行う。本研究においては、アルミナ粒子 (大明化学製 TM-DAR、または住友化学製 AA-03)の場 合にはポリカルボン酸アンモニウム(東亞合成製 A6114) を用いた。炭化ケイ素粒子(屋久島電工製 YO-15)では、 Tetramethyl ammonium hydroxide (TMAH)を用いて pH を 10 に調整し、粒子の分散を行った。

2・3 スラリーの成形および焼結

30vol%または 10 vol%の粉末濃度のスラリーを作製し、 磁場中、磁場外でのスリップキャストおよび EPD により 固化成形を行った。固化した成形体は、CIP (392MPa) 処理を行った後に焼結により緻密化した。焼結には大気中 での電気炉焼成または放電プラズマ焼結(SPS)を用いた。

3. 実験結果

3・1 結晶配向アルミナの高温塑性変形

図4に10Tの強磁場中でスリップキャスト後に1400℃ 大気中にて焼結したアルミナ試料の EBSD 結果を示す。 磁場垂直面(T)では、赤い組織粒が多く、0001 面が配向 しており、磁場平行面(S)では青と緑でありc面と垂直 となる結晶面が配向している。

図 4. 磁場中配向アルミナの磁場印可方向垂直、平行面での EBSD マップ

図 5. 磁場配向アルミナ 1400℃焼結体での c 軸と磁場方 位との角度分布

図 5 には図 4 の EBSD 結果から計算した磁場印加方向 からの c 軸の傾きの分布を示す。この 1400℃焼結体の場 合には、約 61%の組織粒が傾き角 θ が 20°以下の中にあ り、また θ が 50°以上傾いている粒子は全体の 1 割程度と なる配向性が得られている。

このようなアルミナにおいて、配向している c 軸を 45 度傾けて引張り試験(試験温度 1500℃、歪み速度 9.3× 10⁵s⁻¹)を行ったところ、図 6 のように配向アルミナにお いて、変形応力が低下し、破断伸びが増加した。

図 6. アルミナの配向体とランダム材での高温引張り試験 における応力-歪曲線

図 7. 配向アルミナとランダムアルミナとでの応力--- 歪み 速度の関係

また、図7では、応力と歪み速度の関係を両対数プロット を行うことで応力指数(n値)を求めた。従来のアルミナ の報告値と比較するとランダム体であっても組織粒が小 さいために速い歪み速度となった。傾きから n 値を求め たところ、従来の値と同じく2となり、また、変形の活性 化エネルギーも配向体とランダム体ではほぼ同じである ことを試験温度を変化させた実験より確認した。これらの ことより、配向の有無にかかわらず変形機構は界面反応律 速拡散クリープであると考えられた。しかし、配向したc 軸を傾けた場合には、変形応力が低下し、破断伸びが増加 する。このことは、配向材においては basal slip が起こる 確率が高くなり、粒界への転位の蓄積が多くなることによ り、粒界すべりを促進したのではないかと考えられるが、 今後、詳細な検討が必要である。

3・2 配向積層アルミナの創製

図3に示した磁場中 EPD において、磁場と基板の角 度を一定時間後とに変化させることで配向積層アルミナ を作製できることを報告してきている^{4,5)}。塑性変形能を 高めるためには、微細組織粒でありながら変形初期の焼結 欠陥を出来るだけ微小に、また少なくすることが重要とな る。そこで SPS を用いて緻密にすることを試みた。

SPSを用いたアルミナの緻密化に関しては、Kim らの 報告により、昇温速度を遅くすることで微細結晶粒であり ながら透明化が可能であることが報告されているの。透明 性があるということは、焼結欠陥が極めて少ないというこ ととなる。そこで、この手法を用いて配向積層アルミナを 透明化することにより焼結欠陥を抑えることを試みた。 2℃/min で昇温し1150℃で20min 保持することにより図 8 に示すような透光性を有する配向積層アルミナを得る ことに成功した。今後、これらの試料の高温引張り試験を 行っていくことで、配向積層構造が高温塑性に及ぼす影響 について検討する。

図 8. 低速昇温 SPS により作製した透光性配向積層 アルミナ

さらに、従来の2次元的なc軸配向積層だけではなく、 c軸を回転させることで螺旋状となる3次元的に結晶方位 を制御した配向積層制御を試みた。図9には、積層アルミ ナの EBSD マップとそれぞれの層における極点図を示し た。それぞれの層においてc軸の傾きが45度ずつ回転し ていることが分かる。このようにc軸の方位を回転させな がら積層させることに成功した。今後は、さらに角度を変 化させて回転した c軸を積層させるなどを行い、特性への 影響を検討する。

また、炭化ケイ素においても配向積層を試みた。図10 に示すように炭化ケイ素においても c 軸配向方向が層毎 に異なる配向積層焼結体を作製することに成功した。しか しながら、各層での焼結密度が異なることが分かった。こ れは c 軸方向と a 軸方向での焼結特性が異なるからだと 考えられるが、今後、各結晶軸方向での焼結特性などを解 析することで詳細に検討する必要がある。

図 9. 螺旋で c 軸方向を制御した配向積層アルミナ

図 10. 炭化ケイ素における配向積層制御

4. まとめ

結晶方位を考慮した微構造制御を行うことで、塑性変 形に優れたアルミナ焼結体の作製に成功した。今後は、 配向積層アルミナにおける塑性変形特性についても解析 を行い、従来にない微構造が高温特性に与える影響につ いて検討し、単相アルミナにおいて塑性変形を促すよう な微構造の設計指針の確立を目指し、また、その知見を 生かして炭化ケイ素などの他のセラミックスへの展開を 図ることを行っていく予定である。

謝 辞

本研究を遂行するにあたりご支援頂きました(公財) 天田財団に深く感謝の意を表します。

参考文献

- T. S. Suzuki, T. Uchikoshi and Y. Sakka, "Control of texture in alumina by colloidal processing in a strong magnetic field", Sci. Tech. Adv. Mater., 7, 356–364 (2006).
- 2) 鈴木 達、打越 哲郎、目 義雄: "強磁場を用いた反磁性 セラミックスの配向制御", まてりあ,48 [6] 321-326 (2009).
- 3) 鈴木 達,目 義雄,北澤 宏一,「強磁場印加コロイド プロセスによる弱磁性セラミックスの配向制御」,粉体 および粉末冶金,53,479-487 (2006).
- 4) T. S. Suzuki, T. Uchikoshi, H. Okuyama, Y. Sakka and K. Hiraga, "Mechanical properties of textured, multilayered alumina produced using electrophoretic deposition in a strong magnetic field", J. Euro. Ceram. Soc., 26, 661-665 (2006).
- 5) 鈴木 達、打越 哲郎、奥山 秀男、目 義雄:"強磁場・ 電場印加コロイドプロセスによる構造制御セラミック スの創製", セラミックス, 40 [3] 168-172 (2005).
- 6) B-N. Kim, K. Hiraga, K. Morita, H.Yoshida, "Spark plasma sintering of transparent alumina", Scripta Mater., 57, 607-10 (2007).