金型補修工程のための金属溶融積層造形法に関する基礎研究

 慶應義塾大学
 システムデザイン工学科

 助教
 小池
 綾

(平成 28 年度 一般研究開発助成 AF-2016017)

キーワード:アディティブマニュファクチャリング,指向性エネルギ堆積法,インコネル 625

1. 研究の目的と背景

近年ものづくりのあり方が世界的に見直されている中 で、3Dプリンティング技術は急速に発展しており、金属 材料へ適用可能なプリンティング方式が実用されるよう になってきた¹⁾.こうした金属加工を扱う産業用途に適し たプリンティング方式には、粉末床溶融積層法(PBF: Powder Bed Fusion)と指向性エネルギ堆積法(DED: Directed Energy Deposition)の二種類がある²⁾. PBF は 比較的高精度な造形ができるが、加工空間を厳密に密閉す る必要があり、大型部品の作製に不向きであるといった欠 点がある.一方で、DED は高出力熱源を用いて体積の大 きな部品も短時間で加工でき、現存部品の表面に積層する といった被膜処理や修理工程へ応用できることから、金型 の自動補修工程に適した方式といえる.

一方で金属 3D プリンタ全般に共通した課題として,残 留応力や残存空孔といった内部欠陥が造形物中に生じる 問題が挙げられる(図 1).特に,空孔は造形物に外部応力 がかかった際にクラックが生じる原因となるため,部品の 機械強度に大きな影響を与える. 空孔は繰り返し応力に弱 く,疲労強度を低下させる原因であることが知られており, 金型への利用に大きな妨げとなる. DED に焦点を当てれ ば、空孔が残りにくい造形条件を探索するといった手法が 一般的だが ³⁾, 造形条件を変えるのみでは十分に空孔を排 除することが難しい. そこで, 熱間等方圧加圧加工(HIP 処 理)などの後処理を施すことで内部欠陥を排除する提案が 多く成されている 4)5). しかしながら,後処理には専用装 置が必要となるため、コスト面の問題、メンテナンスの必 要性, 製造時間の延長など, 様々なデメリットが生じる. 3D プリンタとして簡潔さを求めるならば、造形物の改質 方法として現行の DED 装置に搭載されている機能のみで 実行できる手法が好ましい.

図1 造形物断面上の空孔

以上の背景から,本研究は DED 装置に搭載されている レーザシステムを用いて,造形物を再加熱する再溶融処理 法によって空孔の低減,機械強度の向上を目指す.具体的 には,造形物の断面観察や金属組織解析によって再溶融処 理が造形物へ与える影響を明らかにし,硬度試験を行うこ とで機械強度の向上を評価した.これらの実験を通じ,提 案手法が確かに付加的な装置を用いず,レーザのみで造形 物の改質が可能であることを示すことを本研究の目的と する.

2. 実験方法

2・1 指向性エネルギ堆積法(DED)

本研究では,指向性エネルギ堆積法により図2のように ニッケル基耐熱合金 Inconel 625 の造形を行った.指向性 エネルギ堆積法は,図3のように金属粉末供給ノズルとレ ーザ射出部が一体となったレーザヘッドが母材上を移動 し,金属粉末供給ノズルから金属粉末を堆積させると同時 にレーザにより溶融・凝固させることで積層を行い,その 過程を繰り返すことで積層造形を行う方法である.

図2 実験装置 図3 指向性エネルギ堆積法

指向性エネルギ堆積法は積層速度が大きく、大型製品の造 形が可能であり、造形形状や加工空間の制約が少ないとい った利点から、大型の複雑形状部品の製造や補修への活用 が期待されている.

2・2 空孔分布マッピング

空孔率が低い造形物であっても,空孔が集中して存在す る個所が存在すれば,最終製品を直接造形した際にその箇 所が原因となり破壊する可能性が高い.そこで本研究では, 図 4 に示すように積層物断面に残存する空孔の集中傾向 をカラーマップにより可視化できる空孔分布図を作製し, 造形物の評価・考察を行った.

Cutting line

(a) 造形物外観と切断線

(a)造形物断面
 (b) 二値化画像
 (c) 空孔マップ
 図 4 造形物断面の空孔分布マッピング法

積層物断面の二値化画像に対して,二次元ガウス窓を用い て算出した局所空孔率を 2 次元上にカラースケールで描 画することによって空孔分布図が得られる.一般的に XY 平面上の二次元ガウス窓w は次の式(1)のように表せる.

$$w(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{(x-\mu_x)^2 + (y-\mu_y)^2}{2\sigma_x\sigma_y}\right)$$
(1)

ただし、 σ_x , σ_y は標準偏差、 μ_x , μ_y は平均値である.この確 率関数で重みづけを行い、畳込積分を行うことで、局所的 に空孔が集中しているか否かを判断できる.具体的には、 式(2)に示す操作を行って各地点における局所空孔率 P_v を 算出する.

$$P_{\nu}(x,y) = \iint_{-\infty}^{\infty} p(x',y') \cdot w(x-x',y-y')dx'dy'$$
(2)

ここで*p*(*x*, *y*) は座標(*x*, *y*) における二値化データであり, 空孔領域内に含まれるならば 1, 空孔領域外ならば 0 とな る関数である.

以上の計算によって求めた $P_v(x,y)$ について,数値ごと に色を与えて画像化した結果が図 4(c)となる.色が濃く表 示された部分には確かに空孔が集中していることがわか る.本研究ではこうして局所的に空孔分布が集中する箇所 を重点的に改善するように,再溶融処理を行う.また,断 面全体の評価指標として,単純に断面全体のピクセル数と 黒く表示される空孔領域のピクセル数を比較して算出し た空孔率も評価に用いた.

2·3 造形条件

表1に示すレーザ出力と粉末供給量を3通りずつ計9 通りの積層条件で30,50,70層積層物を造形した.図4の ように積層物の中央付近でアブレシブジェット加工機に より切断した.その断面を研磨し,光学顕微鏡により積層 物断面の画像を得た. また,レーザによる再溶融処理は 表2に示すとおり,粉末とガスの供給を止め,レーザのみ を照射して実行した.

レーザ出力	W	1600
粉末供給量	g/min	18
キ ャ リ ア ガ ス 供給量	l/min	6
シ ー ル ド ガ ス 供給量	l/min	4
送り速度	mm/min	1000
積層層数		30, 50, 70
金属粉末		Inconel 625
金属粉末の粒径	μm	$45 \sim 125$

表1 造形条件

表2 レーザによる再溶融条件

レーザ出力	W	1400, 1600, 1800
粉末供給量	g/min	0
キャリアガス 供給量	l/min	0
シ ー ル ド ガ ス 供給量	l/min	0
送り速度	mm/min	1000
実行周期		10 層ごとに1回

3. 実験結果

3・1 空孔低減効果の評価

図5は70層積層において、再溶融処理を加えたものと 加えなかったものの空孔マッピングを並べたものである. Local porosity rate

図5 空孔マッピング結果:(a)通常造形物, (b)1600W レーザで再溶融処理を適用した造形物

通常造形物の内部では(a)のように、広い範囲で小規模 の空孔発生が確認されるほか、頭頂部で局所空孔率が高ま っていることから、多くの空孔が残存していることがわか る.一方でレーザによって再溶融処理を施した場合は(b) のように、レーザが照射されもう一度溶融した箇所の局所 空孔率が大きく低減していることが確認できる.特に頭頂 部の空孔がほとんど観測されなかったことから、再溶融処 理によって空孔を排除できるといえる.

再溶融処理によって空孔が排除された原因を詳細に調 べるために,断面にエッチング処理を行って金属組織を露 出させた.造形物頭頂部の比較について,図6に示す.

(a) 通常造形物

(b) 1600W レーザで再溶融処理を適用した造形物図 6 造形物断面のエッチング処理結果

デンドライトと呼ばれる針状の組織が成長している様 子を確認できる.(a)に示した通常造形物について,デンド ライトの成長方向が頭頂部で乱れていることがわかる.と くに表面を覆うような成長方向を示した組織と上方に成 長している組織の間に大きな空間が空いてしまっている. 一方で,(b)に示した再溶融後の金属組織は,頭頂部を貫く ように上方へデンドライトが成長しており,通常造形時の ような空間が生じていないことがわかる.つまり,再溶融 処理によって金属結晶が成長する時間を十分に確保でき て密な組織ができたために,空孔が残らなかったと考えら れる.また,この結果は再溶融処理によって金属結晶の成 長方向を制御できる可能性も示したといえる.

再溶融処理による空孔排除効果を定量的に評価するために、全体の空孔率も算出した.各積層数に対する空孔率の低減結果を図7にまとめる.どの積層数であっても再溶融処理によって空孔率が低減しており、とくに70層積層実験では60%もの空孔率低減を確認できた.

3・2 硬度試験と結晶方向操作性の評価

硬度試験を行うにあたり,前節で空孔低減効果を評価す るために作製した造形物では頭頂部が狭く,試験を実行す る上で適していない.また,結晶の成長方向を制御できる 可能性を評価したいため,本研究では図8に示すように造 形物側面から再溶融処理を施す試験を行った.この時に得 られた造形物の外観を図9に示す.

図9側面再溶融処理を施した造形物と切断線

mm

10

mm

まず,造形物中央を切断して,エッチング処理したとき の断面の様子を図 10 に示す.造形物中央部分では鉛直方 向にデンドライトが成長しているのに対して,提案手法に よって再溶融されたと考えられる領域では,デンドライト が表面に向かって成長していることがわかる.デンドライ トは凝固時の温度勾配方向に成長することが知られてお り,再溶融処理時の表面から中央に向かって生じる温度勾 配によって表面に向かう成長が見られたと考えられる.以 上の結果から,確かに再溶融処理によって結晶成長方向の 制御が可能であるといえる.

図10 再溶融処理を施した造形物断面の金属組織

また,デンドライトの成長は合金の機械特性に異方性が 生じる原因となる.結晶方位について考えると,Inconel 625のようなニッケル基合金は図11のように面心立方構 造となっており,塑性変形は{111}面で生じる.材料に作用 する応力がすべり面に対して成す角度によって変形しや すさが異なり,図12のように{200}面から応力がすべり方 向と最も大きな角度を成すため,変形しにくいといえる.

図 11 面心立方構造とすべり面{111}のイメージ図

デンドライトは合金の中で面心立方構造をなしている 組織なため,図13のように成長に沿った方向においては {200}面のみが観測される.側面から見た場合,すべり変 形しやすい{220}面も含まれた構造となるため,鉛直方向 と比べると強度が劣る.つまり,デンドライトの成長方向 を表面に向けることによって,造形物表面の硬度を向上で きると考えられる.

図 13 デンドライトが含まれる組織とすべり方向の関係

デンドライトの成長方向を表面側に向けた影響につい て調べるために、図9で示したように表面を薄く切断した サンプルに対して X線解析と硬度試験を施した.またビ ッカース硬度試験を図14に示すとおり3mm間隔で上方 から順に行った結果も合わせてまとめる.

図14 硬度試験を行った測定点

まず,X線解析による結晶方向測定結果を図15に示す. 比較のために,再溶融処理を行っていない造形物の結果も 同時に示したが,再溶融処理を行った造形物表面では確か に{111}面や{220}面の割合が減少していることがわかる. つまりすべり変形が生じにくい面を表面に向けることに 成功したといえる.

また,硬度試験を行った結果について,図16にまとめる.全体的な傾向として,頭頂部から距離が離れるほどビ ッカース硬度が大きくなっている.これは母材に近いほど 凝固時の冷却速度が高く,金属組織が緻密になったためと 考えられる.一般的に,緻密な金属組織は高度が向上する 一方で伸び率が落ちる,つまり硬脆性が高まることが知ら れている.造形物高さに応じた金属組織の様子について, 図17にまとめるが,確かに下方ほど金属組織が緻密にな っていることがわかる.加熱条件の工夫によってこうした ばらつきを抑えることも DED において今後解決されるべ き重要な課題といえる.

再溶融処理の有無について比較すると, すべての測定点 で再溶融処理によってビッカース硬度が向上しているこ とがわかる.またレーザ出力の違いによって顕著な差異が 生じておらず, 再溶融処理が施された領域は加熱条件に関 わらず高強度化されるものと考えられる.以上の結果から 本研究では, 金型補修工程に DED を応用する際に, 再溶 融処理を施す提案手法によって, 残存空孔の除去と表面の 硬化を同時に実現できることを示したといえる. 今後, 実 際の金型に提案手法を施して実用することで, 金型寿命に どの程度影響を与えるかを評価する必要がある.

(a) (b) (c) 図 17 造形高さによる結晶組織の違い

4.結論

本研究は,指向性エネルギ堆積法の金型補修工程への適 用可能性を評価する上で,基礎試験として造形物内部の残 存空孔分布を測定した.また,造形物内部の金属組織を改 質することを目指し,容易に実行可能なレーザ再溶融処理 を造形物に施すことを提案した.再溶融処理によって造形 物の残存空孔を大幅に排除できることを実験的に示した ほか,結晶成長方向を操作できることを示し,表面硬度の 向上も達成できることを明らかにした.今後,これらの結 果が実用される金型にも生かせることを確認し,指向性エ ネルギ堆積法による金型補修工程の実用性をより高める ことが課題といえる.

謝 辞

本研究は、公益財団法人天田財団の 2016 年度一般研究 助成によって実施したものであることをここに付記する とともに、同財団の御支援に厚く感謝を申し上げます.

参考文献

- 2) 安齋正博: 3Dプリンター(積層造形)技術のものづくりへの活用方法,日本政策金融公庫調査月報,72,9,38-40,(2014)
- ASTM International, Standard Terminology for Additive Manufacturing Technologies. 2013.
- C. Zhong, A. Gasser, J. Kittel, K. Wissenbach, and R. Poprawe, "Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition," *Mater. Des.*, 98, 128–134, (2016).
- M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, and Q. Shi, "Selective laser melting 3D printing of Nibased superalloy: understanding thermodynamic mechanisms," *Sci. Bull.*, 61, 13, 1013–1022, (2016).
- 5) 田中 紘一石崎 幸三, 新素材焼結: HIP 焼結の基礎と 応用. 1987.