

レーザ積層造形過程におけるチタン材中の酸素・窒素原子の振舞いに係る包括的理解

純子*

梅田

J. Umeda

1. まえがき

チタン(Ti)は、高い比強度、優れた耐腐食性や生体適合 性などの特徴を有しており、広い産業分野で利用されてい る.なかでも、航空機用部材や医療機器では、上記の特徴 を活かした Ti 合金の適用ニーズが大きい.一方で、汎用 Ti 合金では、その高強度化のためにバナジウム(V)やジル コニウム(Zr)、モリブデン(Mo)、ニオブ(Nb)といった高価 なレアメタルの添加を基本とした合金設計が確立してい る.但し、バナジウムとジルコニウムの需要・供給は年々 増加しており、今後もその傾向が強くなることが予測され ており、更なる価格高騰が懸念される.その結果、レアメ タルを含むチタン合金の価格上昇を誘発し、チタン製品の 利用が限られる可能性がある.ゆえに、近年では Ti 素材 の低コスト化による Ti 合金製部材の普及に向けて、添加 元素としてレアメタルを一切使用しない新たな Ti 合金の 材料・プロセス設計の確立が求められている.

このような課題を解決する新たな合金設計として,酸素, 窒素,炭素,シリコン,鉄などのように資源的に豊富で普 遍に存在し,安定供給が可能で廉価なユビキタス元素の活 用が考えられる.これら元素は a-Ti 相や b-Ti 相の強化に 寄与することが報告されているが,その一方で鋳造 Ti 材 では,粒界偏析・濃化や金属間化合物相の析出などにより その延性低下を招く.そのため,各成分の含有量の上限値 は JIS や ASTM において厳密に管理されている.

上記の問題に対して,本研究者らはこれまでに粉末冶金 法を基本とする固相焼結プロセスを用いて,比較的速い冷 却速度条件下で Ti 焼結合金を作製し,各元素を a/8-Ti 結 晶内に均一に固溶する新たな製法を確立した.その結果, 上述した JIS や ASTM の規格上限値を越える酸素や窒素 を含む場合でも伸び値が 20%を越え,かつ 1000MPa 以上 の引張強さを有する純 Ti 焼結材の創製に成功しており^{1,2)}, Ti-6%Al-4%V(Ti64)汎用合金の力学特性を凌駕する高強 度と高延性を実現した.

近年,新たなものづくり技術としてレーザや電子ビーム を金属粉末に照射し,局所的な溶融とそれに続く急速な凝 固・冷却現象を促して複雑形状部材を作製できる金属積層 造形法(Additive Manufacturing, AM)が国内外で注目さ れている.本研究者らは金属 AM 法の特徴である超急速 凝固冷却現象に着目し,上述した粉末冶金法による Ti 結

*大阪大学 接合科学研究所 接合機構部門 複合化機構学分野 教授 晶内への酸素・窒素原子の固溶現象をAM法に展開した. 本研究では、金属AM法の一つである選択的レーザ溶融 (Selective Laser Melting, SLM)プロセスを用いて高濃度 の酸素および窒素が固溶するTi積層造形体を試作し、各 元素の含有量とそれらの結晶集合組織と力学特性(引張強 さ)を調査した上で強化機構に関する定量解析を実施した.

2. 実験方法

酸素の供給源となる TiO₂粒子(平均粒子径 do= 1.8 µm) と母相を構成する球状 Ti 粉末(do= 23.8 µm, 純度 99.5 %) を所定の比率(TiO₂; 0, 0.5, 1.0, 1.5, 2.0 mass%)で配合 した. 各配合粉末についてボールミル装置を用いて乾式混 合を施して TiO₂/Ti 混合粉末を準備した. これらを出発原 料とし, SLM 法を用いて高濃度の酸素含有 Ti 積層造形体 を試作した. 本製法では,図1に示すように原料粉末を造 形ステージ上にリコータブレードで供給し,所定の厚さの もとで粉末をパウダーベッドに均一に敷き詰めた後,レー ザを照射する. SLM 条件として,レーザ出力:160 W, 走査速度:535 mm/s,ハッチ幅:110 µm,積層厚さ:20 µm, サポート高さ:1.5 mm,スポット径:30 µm,アル ゴン(Ar)ガス流入による雰囲気酸素濃度:100 ppm 以下を 設定して各試料を作製した.

図1.本実験で使用した SLM 装置におけるチタン粉末の 積層造形過程の一例(Ti64 合金粉末を用いた実験例)

次に,造形体中の酸素含有量(EMGA830,(株) 堀場 製作所製)を測定した.積層造形体の密度はアルキメデス の原理により測定し,純Tiの密度(4.51 g/mm³)に対す る相対密度を算出した.組織構造・結晶方位解析には X 線回折装置 XRD,走査型電子顕微鏡 SEM とそれに併設 する電子線後方散乱回折装置 EBSD を用い,電子プロー ブマイクロアナライザ EPMA による元素分析を行った. 得られた X 線回折パターンについて Bragg の条件式に基 づいて解析することで母相 a-Ti 結晶の格子定数を算出し た. Ti 造形体から積層方向に対して垂直な方向に板状引 張試験片(平行部幅 2 mm,平行部厚み 1 mm,平行部長 さ 10 mm)を3本採取し,オートグラフを用いて常温に て歪速度 5.0×10⁻⁴/s のもとで引張試験を行い,各 SLM 材 の引張強さと破断伸び値を評価した.

3. 実験方法

3.1 Ti 造形材における TiO₂ 粒子の分解と酸素固溶現象

Ti は活性で酸化し易く,SLM 過程での酸化反応が危惧 されることから,原料粉末および造形材の酸素含有量を測 定した.その分析結果を図2に示す.混合粉末およびSLM 材の酸素含有量について,例えば,Ti-2.0 mass%TiO2で はそれぞれ 0.82 mass%O, 0.89 mass%O であり,増分は 0.07 mass%O であった.これはSLM 過程でTi がSLM チャンバー内の僅かな酸素を取り込んだことによるもの と考えられるが,その増分はTi に添加したTiO2量よりも 少なく,力学特性に大きな影響は与えないと考える.

図2. TiO₂粒子添加量が異なるTi-TiO₂混合粉末および それを用いて作製したSLM材の酸素量測定結果

また,積層造形材の力学特性に影響を及ぼす密度につい て調査するため,各試料の密度を測定した結果,純Ti粉 末(TiO2粒子無添加)およびTi-0.5 mass%TiO2混合粉末 を用いて作製したSLM材は最大相対密度99.3%を有し, 最小でもTi-2.0 mass%TiO2混合粉末の場合における相対 密度は98.2%となり,十分な緻密化が確認された.なお, 純Ti粉末表面にTiO2粒子が付着することで積層過程にお ける粉末充填状態に変化が生じ,TiO2粒子を多く添加し たSLM材では空孔が増加したと考えられる.

次に,各作製工程における TiO2 添加粒子の挙動を確認 するため,原料粉末の純 Ti 粉末,TiO2粒子,組成 Ti-2.0 mass%TiO2 で配合した混合粉末,およびそれを用いて作 製した SLM 材の XRD 測定結果を図3に示す.(a) TiO2 粒子および(c) 混合粉末で検出された27.4°付近のルチル 型構造 TiO2の回折ピークは(d) SLM 材では検出されず,

図3. X線回折結果: (a)純Ti粉末, (b)TiO₂粒子, (c)Ti-2.0 mass%TiO₂混合粉末, (d)Ti-2.0 mass%TiO₂積層造形体

SLM 過程において TiO2 が還元したことを確認した.

続いて、TiO₂粒子の添加量が異なる SLM Ti 材の XRD パターンを図4に示す.いずれの試料においても a-Ti の ピークのみを検出し、本試料は a-Ti 単相であり 8-Ti や他 の化合物が生成していないことを確認した.また、a-Ti {0002}底面に対応する 38.4°付近のピークは TiO₂粒子添 加量の増加に伴い低角度側にシフトし、35.1°付近の {1010}柱面ピーク位置は変化しなかった.これらの結果よ り、TiO₂の添加に伴い a-Ti 結晶は c 軸方向にのみ格子が 伸長したと考えられる.

図4. TiO2粒子の添加量が異なる Ti-SLM 材の X線回折結果

そこで、酸素原子が Ti 結晶中に固溶したことを検証す べく、XRD 解析結果を用いて a-Ti 結晶の格子定数の酸素 添加量依存性を調査した.両者の関係を図5に示す.a軸 長はほぼ一定だが、c軸長は酸素添加量の増加に伴いほぼ 線形に増大した.酸素原子が α-Ti 結晶中に侵入型固溶す ると c 軸方向に格子が伸長することから,添加した TiO₂ 粒子が SLM 過程で還元分解し,解離した酸素原子が α-Ti 結晶中に固溶したと考える.

Additional oxygen content (mass%)

図 5. SLM 材における α-Ti 結晶の a 軸, c 軸方向の 格子定数の酸素添加量依存性

3.2 酸素含有 Ti 造形材の結晶集合組織

酸素固溶による SLM 材の結晶組織変化を明らかにすべ く,SLM 材に対して EBSD 解析を行い,結晶組織とその 配向性について調査した. TiO2粒子添加量の異なる SLM 材 Ti-c mass%TiO₂ (c = 0, 0.03, 0.5, 1.0, 1.5, 2.0)につい て,積層方向に観察した α-Ti の IPF (Inverse Pole Figure) マップ, IQ (Image Quality) マップおよび{0001}面の極 点図を図6に示す.全ての組成において, IPFマップ中の 破線で示すように,積層方向に同一の結晶方位群を有する 集合組織を確認した.この集合組織は、液相からの冷却過 程で初相として析出する 6 相に対応し、これが Burgers の方位関係にしたがって α 相に相変態したものと考えら れる.以後、この集合組織を旧 B 粒と称す.いずれの組成 においても旧 6 粒は積層方向にエピタキシャル成長した ことを確認した.次に、旧 6 粒内の結晶組織について調査 した. (a) Ti-0 mass%TiO₂および(b) 0.03 mass%TiO₂の IPF マップおよび{0001}面の極点図より,積層方向と平行 に{0001}面が向いた約 100 μm の結晶粒径を有する柱状 α 結晶粒の形成を確認した.一方,TiO2 粒子の添加量を増 やした(c)~(f)では、エピタキシャル成長を伴った旧 B 粒 内に 3.6 ~ 4.9 µm の結晶粒径を有する微細な針状結晶粒 が形成した.ここで結晶粒径とは、針状結晶粒の面積を用 いて等軸結晶粒に変換した際の直径に近似した値である. このような TiO2 粒子添加による結晶粒の著しい微細化挙 動は、B相からの冷却過程で a+B 二相共存領域を経由する 際に生じるものと考えられる.酸素を多く含む Ti では, B 単相域からの冷却過程でα+β二相領域を経て初晶α粒あ るいは α'粒 (マルテンサイト相)が生成する. さらに降温 が進むと,残存したβ相の相変態によって2次α/α"粒が析 出するが、これらが先に析出した初晶 α/α'粒と接し、その 粒成長が妨げられる結果,酸素含有量が増加することで結 晶粒径が大幅に減少する.一方,TiO2粒子無添加材では, 酸素固溶量が 0.15 mass%と非常に少なく, α+β 二相領域

となる温度範囲が極めて小さいため、初晶 a/a^{*}粒はほとん ど存在しないと考えられる. 6 単相領域から急冷した Ti-0.94 mass%Oの固相焼結材においても微細化した針状 q' 粒が確認されている. また 0.5 mass%TiO2では{0001}極 点図から中心部,右斜め上から 90°毎に4点の強いピーク が確認できる.これらのピークは,視野内の旧 B 粒が互い に 90°の角度を保ちつつエピタキシャル成長したことに 対応する. 1.0 mass%以上の TiO2 粒子添加材でも同様に, 90°に近い間隔のピークが確認でき、それぞれの旧 6 粒は 一定の方位関係を有してエピタキシャル成長したことが 示唆される.また、{0001}面の極点図中の最大集積強度 (Imax 値) は、Ti-0 mass%TiO2 では約 45 であるのに対 して 0.03 mass%TiO₂ではその約 4/5, 0.5 mass%TiO₂で はその約 1/3, さらに 1.0~2.0 mass%TiO2 では 1/4~1/9 程度に減少し,酸素量の増加とともに結晶配向性は低下し た.これらの結果より、SLM 材は旧 B 粒のエピタキシャ ル成長に起因する配向性を有し、また、酸素元素の添加に より微細な針状 a/a'結晶粒を形成することを示した.

図 6. TiO₂粒子添加量の異なる Ti-SLM 材における結晶 組織および配向性の解析結果(a)0 mass%TiO₂, (b) 0.03 mass%TiO₂, (c) 0.5 mass%TiO₂, (d) 1.0 mass%TiO₂, (e)1.5 mass%TiO₂, (f) 2.0 mass%TiO₂

TiO₂由来の酸素成分の固溶状態を調査すべく,最も酸素含有量が多いTi-2.0 mass%TiO₂(0.89 mass%O)混合粉

末を用いた SLM 材の EPMA を実施した. その結果を図 7(a)に示す.(a-3)の酸素分布から確認できるように,SLM 材の酸素原子は均一に分散していることを観察した,比較 として,既往研究¹⁾における 0.96 mass%O の高濃度酸素 固溶Ti 鋳造まま材の EPMA 結果を図 7 (b) に示す. (b-1, 3) より, 鋳造材は数 100 µm の大きさの板状結晶粒から構成 され,結晶粒内に酸素原子が濃化していることが報告され ている.SLM 材と鋳造材が同程度の酸素濃度であるにも 関わらず結晶組織が大きく異なるのは, 製造過程における 凝固速度差に起因すると考える. 鋳造法では凝固速度が遅 く,結晶粒が成長し酸素原子の偏析が生じる.一方,SLM 法では超急冷凝固(10³~10⁸ K/s³⁾)により酸素原子の濃 化が抑えられ、図7(a-3)に示すように酸素原子が均一に 分散する. これらの結果より SLM 材では、鋳造材のよう な数 100 µm のスケールでの酸素の偏析・濃化領域は確認 されず,酸素は素地全体に均一に固溶していると考える.

図 7. EPMA 結果比較(a)Ti-2.0 mass%TiO₂混合粉末を 用いた SLM 材と(b) 0.96 mass%O Ti 鋳造まま材

3.3 酸素含有 Ti 造形材の力学特性と強化機構の解析

Ti 造形材の酸素固溶量の変化が引張特性に与える影響 を調査するため,SLM Ti-*c* mass%TiO₂ (*c* = 0, 0.5, 1.0, 1.5, 2.0)に対して常温で引張試験を行った.得られた応力 一歪み線図を図8(a)に,0.2%YS値,UTS値,破断伸び 値の酸素含有量依存性を(b)にそれぞれ示す.TiO₂粒子無 添加材の0.2%YSは343 MPa,UTSは381 MPaであっ たが,TiO₂ 添加量の増大に伴い引張強度は増加し,2.0 mass%TiO₂ (0.89 mass%O)では,それぞれ1075 MPa, 1145 MPaと著しい強化を示した.また,破断伸び値に関 して,1.0 mass%TiO₂ (0.54 mass%O)までは約 20 %と高 い値を示したが、2.0 mass% TiO₂ (0.89 mass%O)では 5.6 %まで低下した.既往研究 4によると、酸素含有量が 0.7 mass% O以上の鋳造材は塑性変形を示すことなく、 脆弱破壊を生じることが報告されている.他方、酸素固溶 Ti 焼結押出材では、酸素含有量が 0.93 mass%であっても 固相焼結法により酸素が均一に分布したことで、弾性域で 破断することなく 7.5 %の破断伸びが報告されている ⁵⁾. 本研究で最も酸素含有量が多い Ti-0.89 mass%O SLM 材 (TiO₂添加量: 2.0 mass%) でも破断伸び値は 5.6 %であ

図8.(a)酸素固溶 Ti-SLM 材の引張試験結果, (b) 引張試験結果における酸素含有量の関係

次に引張特性と組織学的知見を踏まえて、本試料におけ る強化機構について考察した.金属の強化機構として、固 溶強化,結晶粒微細化強化,析出強化,分散強化およびこ れらの複合的強化が挙げられる.本研究で使用する Ti 造 形材はすべて a 単相合金であり,酸素も均一に分布してい ることから,酸素原子による固溶強化が作用すると考え, 第二相や析出物および元素の不均一分布による影響は考 慮しないこととする.加えて,酸素含有量の違いによって 結晶組織が変化することから,結晶粒径の違いが強度に及 ぼす影響についても考慮する必要がある.以上を踏まえて, 本節では固溶強化理論の一つである Labusch モデル ⁶ に よる酸素固溶強化量を算出し,引張試験結果と比較すること で酸素固溶 SLM Ti 材の強化機構を定量的に考察した.ま ず,SEM-EBSD 解析結果より Ti-*c* mass%TiO₂ (*c* = 0, 0.5, 1.0, 1.5, 2.0) SLM 材の結晶粒径を測定した. その結果, 平均結晶粒径はそれぞれ, 97.4 µm, 4.9 µm, 4.5 µm, 4.3 µm, 3.6 µm であった. 基準となる純 Ti 材 (TiO₂粒子無 添加)と比べて TiO₂添加材の平均結晶粒径は大幅に減少 した. この要因として,上述したように 0.5 mass%以上 の TiO₂粒子の添加による初晶 α' 粒の粗大化が抑制され た結果と考える.そこで,Hall-Petch の経験則(HP 係数 として純 Ti と同じ 15.7 MPa mm^{1/2}を採用した)に対し て得られた結晶粒径の値を用いて結晶粒微細化による強 化量 $\Delta \sigma_{YSIGRI}$ を算出した.Labusch モデルの適用に際して, シュミット因子は EBSD 解析により得られた計測値を利 用し,他の材料定数は既往研究⁵⁾での値を採用した.但し, 侵入型固溶原子と刃状転位の間に働く相互作用力の最大 値 Fmについては,既往研究⁵⁾と同様に実験データに基づ いて 4.99×10⁻¹⁰ N を算出した.

上述した粒界強化量と固溶強化量に関して,TiO₂粒子 無添加材を基準とした結晶粒微細化強化量 $\Delta oxs[GR]$,上記 の F_m値を用いて算出した酸素固溶強化量 $\Delta oxs[ss·o]$ およ び実際の引張特性を併記した結果を図9に示す.理論計算 により導出した $\Delta oxs[GR]$ と $\Delta oxs[ss·o]$ の合計は,引張試験で 得られた実験値と良い一致を示した.酸素固溶強化量 $\Delta oxs[ss·o]$ はTiO₂粒子の添加量に伴い増大したが,結晶粒 微細化強化量 $\Delta oxs[GR]$ はTiO₂添加材の a-Ti 結晶粒径がほ ぼ等しく,ほぼ一定の値を示した.結晶粒微細化強化量に 対して酸素固溶強化量が最大で約2.6倍であり,酸素固溶 SLM Ti 材 Ti-*c* mass%TiO₂ (*c* = 0.5, 1.0, 1.5, 2.0)では,酸 素固溶強化が支配的であることを明らかにした.

図9.酸素固溶 Ti-SLM 材における強化量に関する 計算結果と実験値の比較

3.4 窒素含有 Ti 造形材の力学特性と強化機構の解析

窒素固溶 Ti 材の作製に際して、本研究グループで開発 した高濃度窒素成分を有する Core-Shell 構造 Ti-N 粉末⁹⁰ に前述の球状純 Ti 粉末を配合した混合粉末を出発原料と した.ここでは両粉末の配合比率を変えることで全体の窒 素含有量を最大 0.5 wt.%となるように調整した.積層造 形においては、先の実験方法で記述の条件を用いた.

先ず,高濃度窒素固溶 SLM Ti 材における常温での引張 強度特性を調査した.応力-歪み曲線を図10に示す.窒 素含有量の増加に伴い、引張強さおよび 0.2%耐力はいず れも増大しており、窒素固溶量が 0.3 wt.%では UTS 976 MPa, 伸び値 22%といった高強度と高延性の両立を実現 した. 作製した高濃度窒素含有チタン積層構造体の強化機 構に関して,上述の酸素固溶純チタン造形体と同様に,結 晶粒微細化と窒素による固溶強化が主たる因子として考 えられる. そこで, 平均結晶粒径, 各試料中の酸素, 窒素 の含有量,結晶配向性に係るシュミット因子を用いて,結 晶粒微細化強化は Hall-Petch 経験式, 固溶強化に関して は Labusch モデルによりそれぞれの強化量($\Delta \sigma_{v[GR]}$ と $\Delta \sigma_{y[SS]})$ を導出した.各強化量は基準となる純チタン積 層造形体の耐力値(YS)と各試料の YS 値の差とした.各強 化量を整理した結果を表1に示す.ここで,引張試験結果 に基づいて算出した強化量をΔ σ y[E],上述した計算結果 をΔσ_{v[C]}とし、両強化量の相関結果を図 11 に示す. 窒素 と酸素の各固溶量とシュミット因子を考慮した Labusch モデルによる固溶強化量の増加分と結晶粒径の微細化強 化量の増分の総計Δσy[C]は、実際の引張試験で得られた 耐力の増加量 $\Delta \sigma y[E]$ と良い一致を示した. ゆえに, 表1 に示した各強化因子による計算値を比較すると,窒素固溶 強化の寄与度が最も大きく,本材料における主たる強化機 構といえる.

図 10. 固溶窒素量が異なるチタン積層造形体の 常温引張試験結果

表1 各造形試料の元素分析結果,組織因子,引張特性と各強化量に関する計算結果のまとめ

SLM Ti-N specimens	Chemical compositions (at.%)				Mean grain	Schmid			Elongation	Increase in	Increase in calculated YS (MPa)			
	0	Ν	Н	Ti	size (µm)	factor, Sf	rs, o _y (MPa)	UTS (MPa)	(%)	$\sigma_{y[E]}$ (MPa)	$\Delta \sigma_{y [GR]}$	$\Delta \sigma_{y[O-SS]}$	$\Delta \sigma_{y[N-SS]}$	$\Delta \sigma_{y[C]}$
Pure Ti	0.47	0.03	0.09	Bal.	30.22	0.346	350.1±6.9	398.4±7.3	18.0±0.8	-	-	-	-	-
Ti-0.1 wt.% N	0.43	0.29	0.09	Bal.	6.06	0.365	602.6±43.5	709.3±47.9	26.7±1.2	253	127.7	-50.5	135.8	213.0
Ti-0.2 wt.% N	0.51	0.73	0.002	Bal.	4.51	0.376	825.8±2.1	883.2±5.2	25.0±1.5	475	164.5	-16.2	287.1	435.4
Ti-0.3 wt.% N	0.51	1.06	0	Bal.	3.93	0.379	904.0±28.3	976.0±28.5	21.7±0.8	554	183.6	-10.4	387.8	560.9
Ti-0.5 wt.% N	0.53	1.76	0	Bal.	2.97	0.377	1148.0±3.8	1217.7±7.4	5.2±1.7	798	226.7	-9.0	548.4	766.1

図 11. 結晶粒微細化強化と固溶強化による耐力増加量に 関する計算結果

4. 結論

本研究では, 選択的レーザ溶融法を用いて酸素および窒 素原子の均一固溶により高強度・高延性を両立した Ti 積 層造形材の作製と、その強化機構の解明を行った.まず、 各試料の結晶集合組織および酸素元素の固溶状態を解析 し,酸素原子が Ti 結晶格子内に固溶していることを示し た.また,引張試験から得られた最大引張強さおよび0.2% 耐力の増加に対する主たる因子として,酸素固溶強化と結 晶粒微細化強化を取り挙げ、固溶強化理論(Labusch モ デル)と Hall-Petch 経験則に基づいて各強化因子を定量 的に解明した.その結果,計算結果と実験値は良い一致を 示すと共に,酸素固溶強化が最も支配的であることを明ら かにした. さらに, 窒素固溶積層造形体における力学特性 の窒素量依存性を定量的に解析した.酸素固溶積層造形体 と同様に強化機構の定量解析に関して、α-Ti 結晶粒の微 細化による粒界強化と窒素溶質原子による固溶強化に着 目し,理論計算によってそれぞれを導出した結果,引張試

験を通じて得られた実験結果と良い一致を確認した. 以上の内容を踏まえると,選択的レーザ溶融法を用いて酸 素および窒素が固溶した積層造形材における主たる強化 因子は,酸素や窒素が a-Ti 結晶粒内に溶質原子として存 在することによる固溶強化機構といえる.

謝 辞

本研究の遂行に際して,公益財団法人天田財団より 2018年度一般研究開発助成(AF-2018215)を賜わりました.ここに深く感謝申し上げます.

参考文献

- S. Kariya, M. Fukuo, J. Umeda, K. Kondoh: Mater. Trans., 60-2 (2019) 263-268.
- K. Kondoh, B. Sun, S. Li, H. Imai and J. Umeda: Inter. J Powder Metal., 50-3 (2014) 35-40.
- B. Wysocki, P. Maj, A. Krawczyńska, K. Rożniatowski, J. Zdunek, K. J. Kurzydłowski, W. Święszkowski: J. Mater. Process. Technol., 241 (2017) 13-23.
- 4) R. I. Jaffee: Prog. Met. Phys., 7 (1958) 65-163.
- S. Kariya, M. Fukuo, J. Umeda, K. Kondoh: J. Jpn. Soc. Powder Metallurgy, 65 (2018) 407-413.
- R. Labusch: Phys. Status Solidi., 41 (1970) 659-669.
- E. O. Hall: Proc. Phys. Soc. Sect. B, 64 (1951) 742-747.
- 8) N. J. Petch: J. Iron & Steel Int., **173** (1953) 25-28.
- A. Issariyapat, T. Song, P. Visuttipitukul, J. Umeda, M. Qian, K. Kondoh: Advanced Powder Technology, **32** (2021) 2379-2389.