

3次元金属積層造形におけるレーザ焼結 プロセスの可視化と高機能金型製造への応用

弘之*

楢原

H. Narahara

1. 研究の目的と背景

3次元金属積層造形法は,機械加工では難しい複雑形状 金属部品の製造が容易であることから,近年,その技術に 対する期待が高まってきている.宇宙航空分野,医療分野, そして生産分野での応用が考えられており,生産分野では 特に金型への応用が期待されている¹⁻⁴⁾.

この中で,日本国内において最も実用化が進んできてい るのは金型への応用である.金型への応用の一つに,三次 元冷却管の配置がある⁵⁾.高精度な部品成形や成形時間短 縮(ハイサイクル成形)が実現される.また別の応用とし ては,金型内部の任意の箇所に通気構造が配置された通気 性金型によって,成形不良の低減や⁶⁻⁹⁾,生産エネルギー の省エネ化¹⁰が試みられている.

図 1 には金属光造形複合加工法の造形プロセスを示し ている.これは積層造形と高速切削を組み合わせた加工法 でありレーザ焼結によって造形された後にエンドミル工 具によって高精度に表面を仕上げ加工するプロセスを繰 り返すことによって実現される.

3次元金属積層造形法は、従来の加工方法では成し得な かった3次元冷却管や通気性金型を実現し、金型をさらに 高機能化するものとして生産プロセスへの大きな貢献を 今後果たしていくと考えられる.しかしながら、造形ひず みが生じることなどの制約が原因で、試行錯誤的に製造条 件を変えて装置はブラックボックスのような状態で利用 されている.金型への実用度をさらに高めていくためには、 3次元金属積層造形のレーザ焼結プロセスに対するメカ ニズムの理解と、高精度化のための対策を明らかにしてい くことが急務となっている¹¹⁻¹⁶.

そこで本研究では、3次元金属積層造形のレーザ焼結プ ロセスを可視化する.そして、悪影響を与えているプロセ スの原因や造形ひずみ発生とレーザ照射パターンや照射 条件との相互関係を調べる.そしてより高性能な金型部品 を実現できる安定的かつ効果的な金型製造を実現するた めの、造形パラメータの検討を進める.

3次元金属積層造形による部品の精度悪化を引き起こ す現象として、スパッタ現象、余剰硬化現象、造形ひずみ 現象などが知られている.これらの現象が及ぼす悪影響に ついて表1にまとめた.本研究は、表2に示す調査方法を 用いて、これらの現象の要因について調べていく.

図1 金属光造形複合加工法の造形プロセス

表1 高機能金型製造に悪影響を及ぼす3次元 金属積層造形における現象

現象	内容	現象が及ぼす悪影響
スパッタ現象	溶融金属が周辺へ飛散	 硬度むらや組成むら。スパッタ 粒子付着による寸法増加の発生。 密度むらの発生による穴や水漏 れ、腐食の発生。切削工具の チッピングなど。
余剰硬化現象	焼結領域周辺での熱拡 散による溶融付着粉末 による寸法増加、表面 粗さの増大	 不安定な寸法変化発生 安全な切削パスによる空切削パスに伴う造形時間の増加
造形ひずみ現象	微小空間での、粉体か ら液体、バルク体へ相 変化に伴う不均一な体 積収縮の発生	 形状変形を避けるための造形寸 法への制約 平面研削や後仕上げ加工の必要 性の発生

表2 各現象の影響要因の調査方法

現象	影響要因の調査方法		
スパッタ現象	高速度ビデオカメラで撮影、スパッタ飛散の 状況を観察		
余剰硬化現象	複数のレーザ照射条件に基づきテストピース 形状を造形し、余剰硬化の状況を顕微鏡で観 察測定する。		
造形ひずみ現象	複数のレーザ照射条件に基づきテストピース 形状を造形し、ペースプレート下面に張り付 けたひずみゲージにより、ペースプレートの ひずみ量の変化を測定する。		

2. 実験方法

2.1 レーザ焼結時のスパッタ現象の可視化

2.1.1 実験装置

実験には株式会社ソディック社製の金属3Dプリンター 0PM250Lを用いた(図2).装置の仕様を表3に示す.

2.1.2 実験条件

表4に実験条件を示す.レーザ走査速度の3条件とレー ザパワーの2条件の組み合わせの合計6条件で造形実験を 行った.

表3 金属3DプリンターOPM250Lの仕様

	種類		Ybファイバーレー
	最大出力	w	ザー 500
レーザー	スポット径	μm	100
	レーザー波長	nm	1070
	スキャニングモ		ガルバノ方式
	ジュール		
	最大主軸回転速度	min ⁻¹	45000
	主軸コレット穴	mm	φ6
	主軸最大トルク	N·m	0.8
主軸	主軸ストローク	mm	260/260/100
	(X/Y/Z)		
	送り速度(最大)	m/min	60/60/30

図 2 OPM250L 外観

表4 スパッタ現象観察の実験条件

(1)レーザー照射条件

項目	単位	数値
走査速度	mm/s	1000 / 1500 / 2000
レーザーパワー	W	400 / 500
積層ピッチ	mm	0.04
レーザーパス方式		全面

(2)高速度カメラ撮影条件

項目	単位	数値
サンプリングスピード	Fps	4000
撮影時間	s	9.4
解像度	ピクセル	672×480
シャッタースピード		フルオープン

2.1.3 実験方法

図3に示す配置で,金属積層造形装置のレーザ遮光ウィ ンドウ越しに照明光源ならびに高速度カメラを配置し,撮 影を行った.造形中の状況を高速度カメラで撮影し分析に 用いた.

図3 実験装置配置(平面図)

2.2 レーザ焼結時の余剰硬化現象の可視化

2.2.1 実験装置

実験には、スパッタ現象測定の時と同じ株式会社ソディ ック社製の金属3DプリンターOPM250Lを用いた.

2.2.2 実験条件

実験は、図4に示すサンプル形状を、複数の造形条件で 造形し実験を行った.実験はL18直交表に基づき計画し、 表5に示す制御因子に対して、3水準の値を設定した.

この中で、内部二重走査,輪郭二重走査とあるのは、レ ーザ走査の方法として,通常は一回のみのレーザ走査で材 料を領域硬化させるのに対し,同じ領域に2回繰り返して レーザ光照射することを意味している. この際, "あり2:8 "とあるのは,レーザ出力の割合を 1回目は20%の出力で,2回目は80%のレーザ出力で行うこ とを意味している.

図4 造形物形状

表5 余剰硬化現象観察の実験条件

水準因子	1	2	3
W. レーザー出力[W]	400	420	440
Q. 単位長さ当たり熱量 [%]	60	80	100
φ. スポット径[mm]	0.1	0.15	0.2
I. 内部二重走査	なし	あり2:8	あり8:2
0. 輪郭二重走査	なし	あり2:8	あり8:2

2.2.3 実験方法

余剰硬化現象の実験においては、まずテストピースを金 属積層造形装置で造形した後、テストピースを装置から取 り出し、テストピースの周囲に発生する余剰硬化物を顕微 鏡で測定した.

図5に示すように、造形物の穴部分を内周,輪郭部を外 周とし、それぞれ測定を行った.測定の手順としては、造 形物を上面から撮影し、画像処理によって輪郭を抽出し中 心線を算出し定義寸法からのずれ量を余剰硬化長として 求め、評価指標の計算を行った.

評価指標には、品質工学で用いられる望目特性の SN 比¹⁷⁾を用いた.

2.3 レーザ焼結時の造形ひずみ現象の可視化

2.3.1 実験装置

本実験においても同様に,株式会社ソディック社製の金 属3DプリンターOPM250Lを用いた.

2.3.2 実験条件

図6に示すように、スペーサーで下面を浮かせ、ひずみ ゲージを張り付けたベースプレートを作成し、複数の造形 条件でモデル形状を造形し実験を行った.実験はL18直 交表に基づき計画し、表6に示す制御因子に対して、各水 準の値を設定した. ここで Laser path で全面,帯状とあるのは,図7 に示 すように、レーザ照射経路の違いを示している.

図6 モデル形状

表6 造形ひずみ実験の各因子の水準と値

	水準1	水準2	水準3
Laser path	全面	帯状	
Q[%]	100	90	80
φ[mm]	0.1	0.2	0.3
W[W]	340	420	500
a[mm]	25	30	35
h[mm]	1	2	3
b[mm]	20	15	10

2.3.3 実験方法

各ベースプレートには、ひずみゲージを取り付け、造形 中のベースプレート下面に生じるひずみを計測した.また、 レーザ照射中の造形面の温度を計測するために、放射温度 計を装置内部に設置し、造形中の造形物の中心位置の温度 変化を測定可能とした(図8).

ひずみ量の計測は、図9に示すように、各層の造形時に、 ひずみ基準点から60秒後からの5秒ごとに6点を取得す る.造形物の高さが1mmの時点でのひずみを評価に用いた. 評価指標には、品質工学で用いられる望小特性のSN比

図8 ひずみと温度の計測箇所

3. 各実験結果と考察

3.1 スパッタ発生状況の評価

3.1.1 実験結果

各実験における条件表を表7に,またそれぞれの測定画 像を図10に示す.また造形条件の違いによるスパッタ粒 子数の変化の結果を図11に示す.スパッタ飛距離の結果 について図12に示す.

3.1.2 考察

図 10 の測定画像から、レーザ走査速度が遅く、レーザ パワーの低い条件ほど、スパッタの発生が少ない傾向が見 られた.また図 11 より、レーザ走査速度の増加に伴い、 スパッタの数は減少している傾向にあった.

また図 12 の結果からは、レーザパワーの増加に伴い飛 散の距離は遠くに飛散し、また走査速度の増加に伴いスパ ッタの飛散距離は近くなる傾向が見られた.

表7 実験条件表

	400[W]	500[W]	
1000[mm/s]	(a)	(d)	
1500[mm/s]	(b)	(e)	
2000[mm/s]	(c)	(f)	

図10 測定画像

3.2 余剰硬化発生状況の評価

3.2.1 実験結果

余剰硬化に関し、ばらつきの発生の程度について、造形 パラメータの因子毎にまとめた結果を図 13 に示す. SN 比 が高いということは、測定値全体でばらつきが小さくなっ ていることを意味している.図 14 には感度の要因効果を 示している.感度が小さいほど目標値に近いことを意味し ている.

図14 余剰硬化量に関する感度の要因効果図

3.2.2 考察

図 13 の SN 比の要因効果図より,水準の違いによる効果 が明瞭に表れているのは,制御因子Qの単位長さ当たりの 熱量であった.また外周と内周とで,傾向に違いが出てい るのが制御因子0の輪郭二重走査であった.図14の感度 の要因効果図より,外周,内周とも同じ傾向を示している が,内周のほうが,感度が高く,目標値から離れている, すなわち全体的に余剰硬化が大きくなっていることが読 み取れる.

これらの結果から、レーザ照射条件が余剰硬化に与える 影響としては、スポット径が大きいほど余剰硬化が少なく なり、単位長さ当たりの熱量が少ないほど、余剰硬化のば らつきが少なくなる.スポット径が 0.15 mmの時が余剰硬 化のばらつきが少なくなるという結果となった.

また,レーザ走査方法による余剰硬化への影響としては, 内部,外部8:2で二重走査を行うと一重走査よりも余剰 硬化が少なくなるという結果となった.

3.3 造形ひずみ発生状況の評価

3.3.1 実験結果

造形中に生じるひずみと温度の測定例を図 15 に示す. 周期的なひずみの変化は、1 層ごとのレーザ照射後に生じ たベースプレートのひずみの変化に相当する. ひずみの正 方向が上そりで、マイナス方向が下そりに相当する. ひず みが急激に低下しその後徐々に上昇するパターンを描い ている. また、放射温度計の観察領域をレーザ光が通過し た時に、温度が瞬間的に急激に上昇し低下している状況が 観察されている.

図 15 造形中に生じるひずみと温度の測定例

L18 直交実験より得られた結果を整理し,図 16 に,ひ ずみの要因効果図を示す.また図 17 に,ひずみのばらつ き程度の指標である SN 比の要因効果図を示す.

3.3.2 考察

ひずみの要因効果図より,レーザ照射パスは type A, スポット径は大きなスポット径,小さなレーザ出力程,ひ ずみが小さくなる結果が得られた.

また SN 比の要因効果図から,ばらつきを小さくする各 制御因子の水準を選択すると、レーザーパスは、水準 1 のタイプA(全面),入熱量は、水準 3 の 80%、スポット径 は、水準 3 の 0.3[mm]、レーザ出力は、水準 1 の 340[W]、 モデル長さ a は、水準 3 の 35[mm]、モデル高さhは、水準 2 の 2[mm]、モデル幅 b は、水準 1 の 20[mm]という組み合 わせとなった.

その組み合わせ条件を最適条件とし、そのパラメータ組 み合わせの造形条件で造形実験を行い、標準条件での造形 ひずみの結果と比較する.

図 18 は,確認実験により得られた,最適条件でのひずみの測定値と,現行条件でのひずみとの比較結果である. 標準条件よりもひずみが低くなる結果が得られた.

また SN 比を計算し,要因効果図から得られた推定値と 比較した確認実験の再現性の確認結果を表 8 に示す.この 比較結果より,現行条件からの利得は十分あり,またおお よそ再現していると判断した.

図18 確認実験の結果

表8 確認実験による利得の再現性の確認

	SN比[db]		SN比[db]
最適条件(推定値)	-25.77	実験(最適条件)	-27.96
現行条件(推定値)	-38.81	実験(現行条件)	-37.43
利得	13.04	利得	9.48

3.4 全体の考察

以上のように、金属積層造形法で高機能金型を製造する 際に問題となる、スパッタ現象、余剰硬化現象、造形ひず み現象について、造形パラメータが与える影響を可視化し 分析する手法について検討し、各現象を定量化する手法を 開発した.

今回開発した手法により,現状の付加製造法で使われて いる造形プロセス自身が内包する特性を定量化すること ができたといえる.

個々の現象については可視化することが可能となった が,実用性の観点から、今後、総合的な判断をさらに加え て、より良い造形条件を見出していく必要があると考えら れる.

4. 結論

3次元金属積層造形におけるレーザ焼結プロセスの可 視化と高機能金型製造への応用を目的に、スパッタ現象、 余剰硬化現象、造形ひずみ現象という、金型製造の高機能 化へ悪影響を及ぼす3つの現象について、造形パラメータ の与える影響度合いを定量化する手法を開発した.

品質工学の手法を利用して,現行の造形条件周辺での造 形パラメータの最適条件を,ばらつきの観点から探索した.

謝 辞

本研究の実施にあたり,株式会社ソディックには多大な る協力を頂きました.また本研究は,公益財団法人天田財 団からの重点研究開発助成 B により実施した研究に基 づいていることを付記するとともに,同財団に感謝いたし ます.

参考文献

- 楢原弘之:日本における Additive Manufacturing の 概要とこれからの課題,計測と制御,54(6),(2015) 381-385
- 2) 楢原弘之:付加製造技術を用いた金型製造法,成形加 工,26(1),(2014) 148-153
- 3) 楢原 弘之:金属光造形複合加工法による金型製造: 産業用金属 3D プリンターの産業応用への課題,光ア ライアンス,28(12),(2017) 48-52
- 4) 楢原 弘之:金型産業における Additive Manufacturing技術の動向と研究事例,精密工学会 誌,82(7),(2016) 634-638
- 5) Yoneyama T, Kagawa H: Fabrication of cooling channels in the injection molding by laser metal sintering, International Journal of Automation Technology, 2(3), (2008) 162-167
- 6) 藤丸浩宣,是澤宏之,楢原弘之:電子ビーム加工による金属光造形通気性金型の性能向上-成形実験による目詰まり減少効果の確認-,型技術, 30(12),(2015) 48-49

- 7) 是澤 宏之, 楢原 弘之:成形性を向上する射出成形金型のガス排出方法, プラスチックス:日本プラスチック工業連盟誌, 68(12), (2017) 32-36
- 8) 是澤 宏之, 楢原 弘之:産業用 3D プリンターと電子 ビーム表面処理によるモールドデポジット抑制とガ ス排出機構の研究,型技術, 32(5),(2017) 44-47
- 9) Koresawa Hiroshi, Fujimaru Hironobu, Narahara Hiroyuki: Improvement in the Permeability Characteristics of Injection Mold Fabricated by Additive Manufacturing and Irradiated by Electron Beams, International journal of automation technology, 11(1), (2017) 97-103
- 10) Hiroshi Koresawa, Kohei Tanaka, Narahara Hiroyuki: Low-Energy Injection Molding Process by a Mold with Permeability Fabricated by Additive Manufacturing, International Journal of Automation Technology, 10(1), (2016) 101-105
- 11) Yassin Abdullah, Ueda Takashi, Furumoto Tatsuaki, Hosokawa Akira, Tanaka Ryutaro, Abe Satoshi: Experimental investigation on cutting mechanism of laser sintered material using small ball end mill, Journal of Materials Processing Technology, 209(15), (2009) 5680-5689
- 12) Yasa Evren, Craeghs Tom, Badrossamay Mohsen, Kruth Jean-Pierre: Rapid manufacturing research

at the Catholic University of Leuven, Istanbul: US Turkey Workshop on Rapid Technologies, Istanbul: US Turkey Workshop on Rapid Technologies, 2009)

- 13) Kruth J-P, Levy G, Klocke F, Childs THC: Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals-Manufacturing Technology, 56(2), (2007) 730-759
- 14) Kruth J-P, Leu Ming-Chuan, Nakagawa T: Progress in additive manufacturing and rapid prototyping, CIRP Annals-Manufacturing Technology, 47(2), (1998) 525-540
- 15) Kruth Jean-Pierre, Badrossamay Mohsen, Yasa Evren, Deckers Jan, Thijs Lore, Van Humbeeck Jan: Part and material properties in selective laser melting of metals, Proceedings of the 16th International Symposium on Electromachining, Proceedings of the 16th International Symposium on Electromachining, (2010)
- 16) Furumoto Tatsuaki, Ueda Takashi, Alkahari Mohd Rizal, Hosokawa Akira: Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera, CIRP Annals-Manufacturing Technology, 62(1), (2013) 223-226
- 17) 中野惠司,大場章司,井上清和:上級タグチメソッド,2009,日科技連出版社,pp1-145