

切削工具を応用した摩擦攪拌点接合ツールの 塑性流動状態の解明

生田 明彦*

A. Ikuta

1. まえがき

摩擦攪拌点接合(以下, FSSW) は, 例えば自動車製造に おいて,非鉄金属の使用が増大してきている等の理由から, 従来の抵抗スポット溶接に代わる技術として注目されて きている. FSSW の特徴として, 固相接合であるため変形 が小さい,接合困難な 2000 系や 7000 系のアルミニウム合 金あるいは複合材, 異種材料の接合に適しているなどがあ る.これらの特徴を活かして,さらなる利用拡大を図る際, FSSW に求められる性能として、まず、継手の機械的性質 の向上が挙げられる. その方法として, ツール形状の変更 は有力な手段の一つであると考えられる. FSSW における 接合原理は,ツールの回転によって摩擦熱を発生させ,被 接合材料を軟化させながら塑性流動させることによって 一体化するものである. そのため, 近年では接合材料の塑 性流動に関する報告が多くなってきている. ここでも, 塑 性流動を積極的に発生させる存在がツールであることか ら、FSSW においてツールが重要な意味を持つと考えられ る.

FSSW 用ツールにおいて、一般的なツール形状は、プロ ーブと呼ばれる突起部とショルダと呼ばれる平滑部を有 する円柱状である. この中で, 主にプローブ部と接合材料 との摩擦により、接合材料内に塑性流動が発生するとされ ており, 塑性流動性にはプローブ部の形状が大きな影響を およぼすと考えられる. また, 接合材料の塑性流動は主に せん断変形によるとの報告がある 1). これらのことから、 FSSW 用ツールのプローブ部には、効率的な変形により塑 性流動を発生させるような形状が望ましいと考えられる. 一方で,ツールすなわち工具を用いて材料を加工する方法 として, 切削加工がある. 切削加工は工具を用いて被削材 をせん断変形させることにより, 切りくずを生成する除去 加工であるが, 工具が切りくずを生成するまでの過程は, FSSW でもほぼ同様であると考えられる. 切りくず生成後, 切削工具においては積極的に切りくずを排出するが、FSSW においては切りくずつまりのような状態となって攪拌が 進行するものと考えられる.

そこで、本研究では、せん断変形を効率的に発生させるため、プローブ形状に切削工具の知見を取り入れ、すくい角に相当する角度が正角となるようなツール形状を提案する。これらツールは、これまでの円柱型プローブツールとは全く異なる塑性流動状態となることが考えられる。そのため、接合材料の塑性流動にともなう継手の組織形状を特徴づけるため、組織形状パラメータを定義し、これらを測定することによって、ツールが塑性流動状態におよぼす影響を定量化することを試みた。また、この塑性流動状態と継手の機械的性質の関係を明らかにすることを目的とした。

2. 実験方法

2.1 供試材料

本研究において,接合材料として使用したアルミニウム合金は,A5052-H34(以下,A5052)およびA6061-H651(以下,A6061)である.化学組成を表1に示す.材料の寸法は,長さ75mm,幅25mm,板厚1.5mmのA5052および長さ75mm,幅25mm,板厚3mmのA6061とした.

2.2 摩擦攪拌点接合方法

FSSW の接合条件は、ツール回転速度を 1000, 1500, 2250 および 3000rpm と変化させ、Plunging 速度 2.5mm/s、Dwell 時間 (Plunging 後の位置保持時間) 1s およびショルダ部 Plunging 深さ 0.4mm とした.接合方法は、上板を A5052、下板を A6061 アルミニウム合金とし、重ね代を 25mm として、その中心に接合を行う重ね合わせ継手を作製した.

2.3 摩擦攪拌点接合ツール

FSSW に使用したツールは、SKD61 を機械加工して所定の形状にした後、熱処理を行って、硬さを 46~48HRC としたものを用いた.ツール形状を図1に示す.ツールはショルダ直径 10mm およびプローブ長さ2.2mm で、プローブの断面形状が異なるものを使用した.プローブ断面形状が三日月形で切り欠き部分が大きいもの(以下、SM ツール)、

表 1 接合材料の化学組成(wt%)

Materials									
A5052-H34	0.01	2.38	0.04	0.08	0.19	0.20	0.01	-	Bal.
A6061-T651	0.26	1.0	0.05	0.60	0.25	0.16	0.01	0.02	Bal.

^{*}近畿大学 工学部 機械工学科 教授

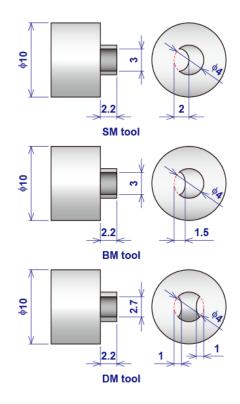


図1 接合ツールの形状

プローブ断面形状が三日月形で切り欠き部分が小さいもの(以下,BM ツール) および切り欠き部分を二カ所持つもの(以下,DM ツール) をツールとして使用した. なお,これらのツールは,前述したようにせん断変形を容易にするとの考え方から,切削工具の知見を取り入れたものである. すなわち,切削工具のすくい角に相当する角度が正角で,切りくずだまりが大きいもの(SM ツール),同様に切りくずだまりが小さいもの(BM ツール) およびすくい角に相当する角度がほぼ 0°で,切りくずだまりが複数あるもの(DM ツール) となっている.

2.4 接合部の評価方法

FSSW 後, 得られた継手の引張せん断試験を行った. 試 験方法は,得られた継手をそのままの状態で引張り,せん 断的に破壊した荷重で評価した. なお, 引張速度は 1mm/min である. また, 引張せん断試験前後の継手を断面 方向に切断し、鏡面研磨後、ケラー試薬(フッ酸 2ml,塩 酸 3ml, 硝酸 5ml および蒸留水 190ml) で腐食して, 光学 顕微鏡により組織観察を行った. 引張せん断試験前の継手 については、接合部の状態を定量化するため、図2に示す ように組織形状パラメータを測定した. 測定項目は攪拌領 域幅2,プローブ表面からフック(上板材料と下板材料の 界面に存在する酸化物層) 3,4) 先端までの距離(以下,Y 値) 5), フックと上板および下板の初期界面とのなす角(以 下,曲度),攪拌領域幅と変形材料幅の和でもあり,プロ ーブ表面から接合開始点までの距離(以下,接合幅)であ る. また, 各ツールによる接合材料の塑性流動の状態を明 らかにするため、トレーサ法により上板および下板の塑性

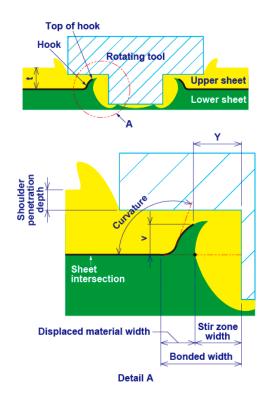


図2 組織形状パラメータ

流動を、それぞれ走査型電子顕微鏡を用いた反射電子像の観察を行った。上板の場合は PCD7mm に直径 0.8×深さ 1mmのキリ穴を 4 つ配置し、下板の場合は接合ツール回転中心から 1mmの位置に直径 0.8×深さ 1mmのキリ穴を 1 つ配置し、超硬合金粉末を充填した。その後、通常と同条件でFSSWを行った継手を用いて観察を行った。

3. 実験結果

3.1 継手の引張せん断試験結果

図3は、各ツールを用いて作製したFSSW継手の引張せ

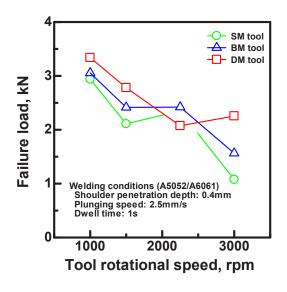


図3 引張せん断強度とツール回転速度との関係

ん断試験結果を示したものである. いずれのツールを用いた場合も, ツール回転速度 1000rpm において引張せん断強さは最も高い値を示した. また, いずれの接合ツールもツール回転速度が増加すると, 引張せん断強さはおおむね低下する傾向を示した. この中で, DM ツールを用いた場合の引張せん断強さは, 他のツールを用いた場合よりやや高くなる傾向を示した. なお, 最も引張せん断強さが大きくなる場合, 3kN 以上を示すことから, 同様の寸法のツールを使用した場合と比較しても高い値を示していると考えられる.

3.2 継手の組織観察結果

図4は、最も高い引張せん断強さを示したツール回転速度1000rpmにおいて、各接合ツールを用いて作製したFSSW継手の組織観察結果を示したものである.いずれの接合ツールを用いた場合でも、攪拌領域は不明瞭で、フック先端位置は低いままであることが観察された.そのため、組織形状パラメータを測定して特徴を定量化した.

図5~8 は、それぞれ接合幅、Y値、曲度およびフック高さについて示したものである。接合幅を示した図5より、DM ツールのみツール回転速度が増加するにつれて接合幅も拡大する傾向を示し、SM および BM ツールではツール回転速度が増加するにつれて接合幅は一旦拡大した後、減少

する傾向を示した、Y値を示した図6より、各ツールによ り若干の違いはあるものの, 概ねツール回転速度が増加す るにつれて接合幅は一旦拡大した後,減少する傾向を示し た. 曲度を示した図7より、いずれのツールでも、ツール 回転速度が増加するにつれて接合幅は一旦拡大した後,減 少する傾向を明確に示した. フック高さを示した図8より, SM ツールは回転数に関わりなく低いフック高さを示した が、低回転領域でのみ非常に高いフック高さを示した. 一 方、BM および DM ツールは回転数に関わりなくほぼ一定の フック高さを示し、高回転領域でややフック高さが高くな る傾向を示した. これらのことから, 本実験に使用したツ ールを用いて作製された継手における組織形状の特徴は, 概ね,接合幅やY値はツール回転速度に関わりなく大きく なる傾向を示すことであると考えられる. また, 曲度はツ ール回転速度が大きくなると急激に低下すること, および フック高さはツール回転速度に関わりなくほぼ一定であ ることであると考えられる.

図9は、最も高い引張せん断強さを示したツール回転速度1000rpmにおける、引張せん断試験後の組織観察結果を示したものである.いずれのツールを用いた場合も、破断経路はせん断的に攪拌領域を含む熱加工影響部を横断していた.最も高い引張せん断強さを示したDMツールの

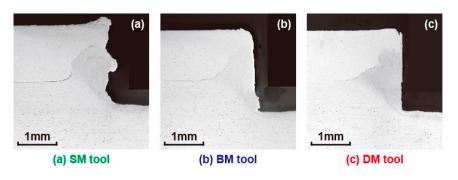


図 4 ツール回転速度 1000rpm における FSSW 継手の組織観察結果

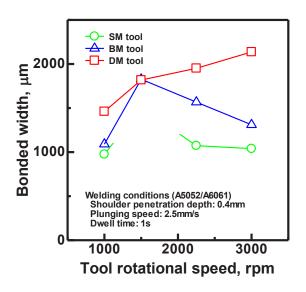


図5 接合幅とツール回転速度との関係

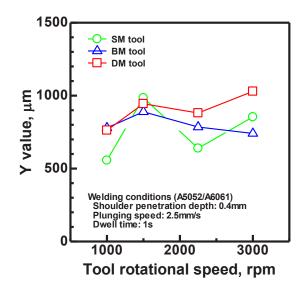


図6 Y値とツール回転速度との関係

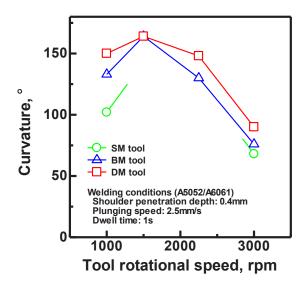


図7 曲度とツール回転速度との関係

場合,図5に示したように,他のツールに比べて接合幅が大きくなっており,せん断面積が大きくなっていた.また,図7に示したように曲度も大きいことから,ある程度までフックに沿って破断が進展した後,せん断的に破断したと考えられ,このことが応力集中の低減効果にも寄与したと考えられる.

3.3 塑性流動状態の観察結果

図 10 は、上板にトレーサ材料を配置した場合の塑性流動状態を観察した一例として、ツール回転速度 1000rpm における DM ツールを用いた場合を示したものである.トレーサ材料は、点1に示すように当初配置した領域で多く観察され、バリの排出方向に向かって分布しており、点2 および 3 に示すようにキーホール方向では全く観察されなかった.

図 11 は、下板にトレーサ材料を配置した場合の塑性流動状態を観察した一例として、ツール回転速度 1000rpm における DM ツールを用いた場合を示したものである。トレーサ材料は、点1および2に示すように、キーホール側面部および上板の内部の位置で、層状に観察された。また、点3に示すように、トレーサ材料はキーホールに沿ってごくわずかに観察される程度で、上板の表層には至っておらず、上板内では垂直方向上向きの塑性流動はほとんど無いと考えられる。

本実験に使用したツールの塑性流動は、上板についてはツール外周部に向かってバリを排出するような塑性流動があり、下板についてはキーホールに沿って上昇し、これが上板に到達した付近で外側横向きに転ずるような塑性流動があると考えられる。これらの結果は、一般的なツールの場合、ショルダからプローブに沿って上方から下方への塑性流動が発生するとされている状態とは異なっていると考えられる。また、本研究で指摘している切削工具のすくい角に相当する角度が、負角になるようなツールの場合とも塑性流動状態は異なっておりの、本研究で使用した

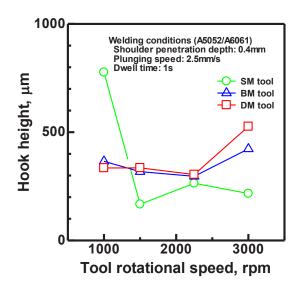
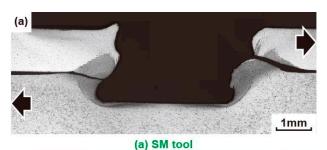



図8 フック高さとツール回転速度との関係

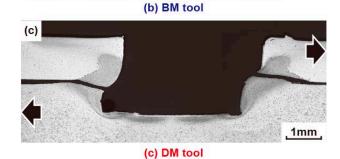


図9 ツール回転速度1000rpmにおけるFSSW継手の引張せん断試験後の破断位置

ツールが発生させる塑性流動は、非常に特徴的であることが明らかとなった.

4. 結論

せん断変形を効率的に発生させるため、プローブ形状に切削工具の知見を取り入れた摩擦攪拌点接合用ツールの

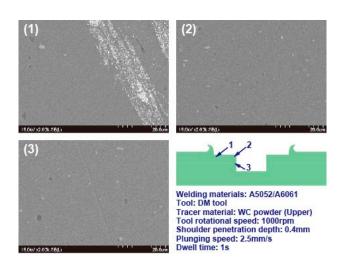


図 10 ツール回転速度 1000rpm において DM ツールを 用いて作製された FSSW 継手の上板における塑 性流動状態観察結果

特徴を明らかにするため,継手の機械的性質および塑性流動特性を調査した結果,以下の結論を得た.

- (1) 本接合ツールを用いて作製した継手の引張せん断強 さは、低回転域で大きくなり、3kN以上を示す.
- (2) 組織観察結果を用いて組織形状を定量化した結果,接合幅や Y 値はツール回転速度に関わりなく大きくなる傾向を示すことや,フックの曲度はツール回転速度が大きくなると急激に低下すること,および,フック高さはツール回転速度に関わりなく,概ね一定であることが明らかとなった.
- (3) 本接合ツールを用いた場合、上板にはツール外周部 に向かってバリを排出するような、下板にはキーホ ールに沿って上昇し、上板に到達した付近で外側横 向きに転ずるような塑性流動があると考えられる.

謝辞

本研究は、公益財団法人天田財団からの一般研究助成 (AF-2012010) により実施した研究に基づいていることを付記するとともに、同財団に感謝いたします.

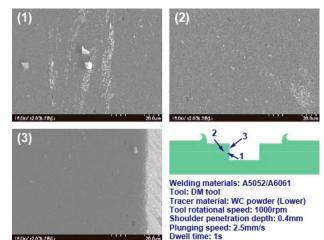


図 11 ツール回転速度 1000rpm において DM ツールを 用いて作製された FSSW 継手の下板における塑 性流動状態観察結果

参考文献

- T. Shibayanagi, A. Gerlich, K. Kashihara and T. H. North: Metallurgical and Materials Transactions A, 40A (2009), 920-931.
- 2) Y, H. Yin, N. Sun, T. H. North and S. S Hu: Science and Technology of Welding and Joining, 15-1 (2010), 81-86.
- 3) H. Badarinarayan, Y.Shi, X.Li and K.Okamoto: International Journal of Machine Tools and Manufacture, 49 (2009), 814-823.
- G. Buffaa, G. Campanile, L. Fratini and A. Prisco: Materials Science and Engineering A, A519 (2009), 19-26.
- 5) Y. H. Yin, N. Sun, T. H. North and S. S. Hu:
 Materials Characterization, 61(2010),
 1018-1028.
- 6) 生田明彦, 尹玉環, T. H. North: 溶接学会論文集, 30(2012), 107-115