

複素変調透過板(ビルトインレンズマスク) による三次元ビーム加工

義彦*

平井

Y. Hirai

1. まえがき

マイクロ・ナノ構造を樹脂や金属材料の表面に加工する ことにより,多様な機能性表面の実現が期待されている. 生体模倣構造はその代表例であり,これまでに昆虫の眼球 の光反射防止構造,蓮の葉表面の撥水あるいは浸水構造, ヤモリの足裏の吸着構造,モルフォ蝶の構造色,サメの表 皮の流体潤滑構造などが,産業化されている.

レーザーを含むビームプロセッシングは、これらの加工 に有効な方法の一つである.しかし、従来の方法ではビー ムをきめ細かく立体的に照射する必要があるほか、ビーム のブランキングによる逐次加工では、効率が悪くコストを 要する.3Dプリンター技術も同じ問題を抱える.

このため、ミクロン精度で、かつ広範囲にわたる一括照 射が可能な三次元ビーム加工技術の創出が望まれる.

本研究では、三次元空間で任意のビーム強度分布を得る ために、空間に結像しようとするビームの波面を、複素透 過率をもつ透過板により再現する新しい概念による三次 元一括ビーム露光方法を提案し、これを用いた三次元マイ クロ・ナノ構造の直接一括加工の原理的な検証を行った.

2. 複素変調透過板(ビルトインレンズマスク) による結像原理¹⁾

2.1 結像原理の概要

空間にビームを結像させるためには,結像面あるいは結 像空間に向けて収束する複素波面(振幅と位相をもつ振動 面)を'生成'すればよいことになる.

このような複素波面を人工的に生成するために,ここで はコヒーレントなビームを「透過板」に照射し,透過した ビームの振幅と位相すなわち複素振幅を変調することに より,複素波面を再現することを試みた.

この「透過板」を、透過光の波面を複素変調するという 意味で、複素変調透過板と呼ぶことにする.さらに、あた かも結像性のあるレンズを通して露光したように結像さ せる意味で、ビルトインレンズマスクと名付けた.

2.2 ビルトインレンズマスクの概念

図1に, ビルトインレンズマスクの概念図を示す.レン ズを用いた従来の結像光学系では,図1a)に示すようにマ スクを通過した光ビームは,従来の幾何光学ではレンズに より屈折し, 焦点面で結像する.

一方で,光ビームは振幅と位相をもつ波面として空間を 伝搬するため、レンズは屈折率差を利用して波面を'変調' する機能持つものと見なすことができる.

従って、図1b)に示すように、マスクを透過した後の波 面(振幅と位相)を、レンズを透過した後の波面に置き換え ると、マスク像を焦点面に結像させることができる.

図1 複素変調透過板(ビルトインレンズマスク)による ビーム露光の原理

ここで、類似する技術としてホログラフィを連想するが、ホ ログラフィは物体からの反射光を再現し、実態の無い虚像を得 ているのに対し、ビルトインレンズマスクは実像を結像するた めビーム加工が可能となる.この点が、ホログラフィとの大き な違いとなる.

ビルトインレンズマスクは,透過後の波面の振幅と位相 をマスク平面内で変化させ,レンズを透過した光ビームの 波面をマスク面で再現することにより,あたかもレンズを 通して実像として結像させるものである.

これにより,解像性を損なうことなく任意の焦点位置で, 任意の像強度を得ることができるとともに,複数の焦点位

*大阪府立大学 大学院 工学研究科 電子・数物系専攻 電子物理工学分野 教授

置を持つ多重焦点機能や、これを利用した三次元露光の可 能性が生まれる.

2.3 ビルトインレンズマスクの設計

ビルトインレンズマスクの設計方法について簡単に述べる. 図 1 b)に示すように、焦点面上で得ようとする任意の光強度分 $\pi u_0(x,y)$ を定義する.

ここで、焦点面(x,y)から d だけ離れた光ビーム伝播面(X,Y)の 複素振幅関数を $g_0(X,Y)$ とすと、波数空間 $k=(k_x,k_y,k_z)$ での平面波 の複素振幅 \overline{A}_0 は、

$$\overline{A}_0(k_x, k_y, d) = \iint u_0(x, y, d) \exp[i(k_x x + k_y y)] dx dy \quad (1)$$

と表せる.これより, 焦点面からの位置 z における平面 波の複素振幅 $A_0(k_x,k_y,z)$ は,

$$A_0(k_x, k_y, z) = \overline{A}_0(k_x, k_y, z) \exp\left[i\sqrt{k_x^2 + k_y^2}z\right]$$
(2)

で表される.したがってマスク面(x=0)での複素振幅 g₀(X,Y)は,

$$g_{0}(X,Y) = \begin{cases} 1/(2\pi)^{2} \iint_{\sqrt{k_{x}^{2} + k_{y}^{2}} \le 2\pi/\lambda \sin\theta} A_{0}(k_{x},k_{y},z) \exp\left[-i(k_{x}x + k_{y}y)\right] dk_{x} dk_{y} \\ 0: for \sqrt{k_{x}^{2} + k_{y}^{2}} > \frac{2\pi}{\lambda} \sin\theta \end{cases}$$
(3)

と表される.

すなわち, 焦点面上で得たい複素振幅分布 $u_0(x, y)$ を与 えると, 焦点面からz離れた光伝播面の複素振幅 $g_0(X, Y)$ すなわちビルトインレンズマスクの複素透過率が求まる. ここで, θ はレジスト面から見たマスクの半角であり, レ ンズの開口率 NA に相当する.

以上のように設計したビルトインレンズマスクに、コヒ ーレント光ビーム(可干渉光)を照射すると、焦点面上に光 強度分布 $u_0(x,y)$ の像を得ることができる.ただし、(3)式 に示すように、解像性は θ の大きさに依存し、マスクの大 きさや焦点距離によっては解像性が劣化する.

このように、レンズ効果をもたらす複素振幅波面を、マ スクの透過率と位相差で再現することにより、レンズレス で任意の転写深さ(焦点面)での解像度を向上させた微細 加工を実現することができる.

2.4 複素透過率の離散化

先ほど求めた複素振幅 $g_0(X,Y)$ は,透過率分布 $|g_0(X,Y)|$ と位相分布 $\angle g_0(X,Y)$ から成る連続関数で あるため、マスク上で連続的に変化する透過率と位相を実 現する必要がある.しかし、現在の技術ではそのような透 過板を作製することは困難である.

そこで,連続的な複素振幅分布を離散化することで,作 製可能なマスクとして,複素振幅を近似して再現した. これには、従来の半導体リソグラフィで用いる位相シフ トマスク技術が利用できる.これは、石英上にクロムパタ ーンを転写し、開口部に掘り込みを加えることで、石英層 と空気層の屈折率の違いにより位相差を発生させるマス クである.

まず透過率について離散化を行った.連続透過率分布 |g₀(X,Y)| に (4) 式 を 用 い て 離 散 化 透 過 率 分 布 |G₀(X,Y)|を導く. 閾値 T_c以上を透過部分, T_c以下を遮 光部分となる.

$$|G_0(X,Y)| = \begin{cases} 1 : |g_0(X,Y)| \ge T_c \\ 0 : |g_0(X,Y)| \le T_c, \end{cases}$$
(4)

次に、位相分布について離散化を行った.連続位相分布 $\angle g_0(X,Y)$ に (5)式を用いて離散化位相分布 $\angle G_0(X,Y)$ を導く.ここで、 $\Delta \theta$ は位相許容値を表し、透過 させたい位相から $\Delta \theta$ ずれた位相分布までを光が透過する となる(透過率は 1.0).

$$\angle |G_0(X,Y)| = \begin{cases} 0 : \Delta\theta \le \angle (g_0(X,Y)) \le \pi - \Delta\theta \\ \pi + \Delta\theta \le \angle (g_0(X,Y)) \le 2\pi - \Delta\theta \end{cases}$$
(5)

ここで、複数の位相差を創出するには、複数の段差が必要になり、透過板の作製プロセスが複雑になる.このため、 基本的に式(5)を用いた二値化を行った.連続的に変化す る複素振幅分布を、二値化する例を図2に示す.

この手法により,図3に示すようなビルトインレンズマ スクが作製できる.

図3 離散化したビルトインレンズマスクの断面図 (透過率を(1,0), 位相を(0,π)で離散化している)

3. 二次元結像の検証

ここでは、ビルトインレンズマスクの有効性を、シミュ レーション並びに実験により検証した.

3.1 ビルトインレンズマスクの作製

図4に、ビルトインレンズマスクの作製方法を示す. 石英基板に、電子線(EB)露光とリフトオフプロセスにより、 遮光部分となるクロム(Cr)マスク部分を作製したものを 用意する(図4a)~d)). 続いて、電子線露光時に作製した 位置合わせマーク(アライメントキー)を基に、位相変調部 分のパターンを、縮小投影露光装置を用いてフォトリソグ ラフィを行い、これによって形成したレジスト樹脂パター ンを保護膜として、ドライエッチングにより石英基板に溝 を彫り込むことにより、位相変調部分が作製できる(図4e) ~h)).

図5に、この方法で試作した、ビルトインレンズマスク の一例を示す.図5(a)は、光学顕微鏡写真で、黒い部分が 光の透過部分で、白い部分が遮光部のCrにより光が反射 した部分である.また、図5(b),(c)は、走査型電子顕微鏡写 真である.位相変調部分が、彫り込まれている.

図4 ビルトインレンズマスクの作製方法

(a) 光学顕微鏡写真

(b) 走查型電子顕微鏡写真

(c) 走査型電子顕微鏡写真(拡大)図5 試作したビルトインレンズマスク

3.2 ビーム照射系

ビルトインレンズマスクとビーム軸の垂直性,マスクと 被照射材料の平行性を確保するために,専用のビーム照射 系を作製した.

図 6a)に全体図を示す. ここでは、ビーム光源として UV 光源を用い、光ファイバーで照明光学系を通してコヒーレ ント性を確保して約 1 インチ径の平行ビームとし、図 6 b)に示すマウント部に照射した. ビルトインレンズマスク によるビーム照射では、マスクと光軸との垂直性を確保す る必要がある. このため、マウント部のステージからの参 照レーザー光の反射光により、光軸とのずれを調整した. また、ビルトインレンズマスクとレジスト間にシムを挟み 平行性と間隔を確保した.

ここでは,波長 365nm で焦点距離 d=50µm とし,線幅 2µm の T 字型のパターンを露光した.

図 7 に、従来マスクとビルトインレンズマスクを用いて、 感光性樹脂(フォトレジスト)を露光し、現像後の形状観察結果 を示す.設計線幅 2.0µm の T 字パターンに対して、従来露 光方法での解像寸法が約 5.8µm であるのに対して、ビルト インレンズマスクでは約 3.0µm の解像性が得られている. また、実際の露光実験とシミュレーション解析結果はよく 一致し、ヒルトインレンズマスクの効果とシミュレーショ ン解析の信頼性が検証できた.

b) ビルトインレンズマスクによる露光

図7 ビルトインレンズマスクの効果検証

左: マスクレイアウト, 中: 光強度度分布のシミュレーション, 右: レジスト露光実験結果 (設計線幅: 2.0μm, マスクからの 距離(焦点位置): 50μm)

4. ビルトインレンズマスクによる三次ビーム 加エ²⁾

4.1 シードパターンを用いた三次元結像方法の提案

ビルトインレンズマスクの機能を利用すると、一枚のマ スクで、異なった複数の焦点位置に結像させる多重焦点機 能が期待できる.これを利用して、三次元結像を試みた.

図8に、多重焦点機能の基本的検証概念を示す.ここでは、3つの焦点位置に結像するバターンを重畳させている. 各焦点位置での種となるパターンをシードパターンと呼ぶことにする.

各焦点 z_i におけるシードパターン $u_i(x, y, z)$ に対応した複素振幅 $g_i(X, Y)$ をそれぞれ導出し、重畳させる.

 $g(X,Y) = \sum w_i g_i(X,Y) e^{i\Delta\theta}$ (6)

ここで、パターン間の相互干渉を防ぐためのパラメータ としてシードパターンの強度 w_i ,位相変調 $\Delta \theta_n$ を与えた. これにより、多重焦点機能を持つビルトインレンズマスク の複素振幅g(X,Y)を得る.

さらに、連続的な複素透過率g(X,Y)に対して適切な閾 値を設け、透過率 T=1 or 0、位相 θ =0 or π となるように 透過率・位相の二値化を行い、G(X,Y)とすることで作製 可能なマスクとした.

この方法による三次元構造の露光を検証するため、計算機シ ミュレーションによる結像評価を行った. 図9に、A 字型構造 の結像結果を示す. 図9a) に示すように、シードパターン に位相調整を施さない場合は、平行する二本のパターンが 干渉により消失している.

そこで、図9b)のように下段のシードパターンの位相を シフトすることにより、消失することなく上下のパターン が結像できた.また、図で示したように、両横の深い焦点 長さをもつ像も得られている.

このように、シードパターンの相互の干渉を回避するこ とで、一枚のマスクによる一括露光により、三次元結像が 実現できることが、シミュレーション解析により示された.

図10は、文字「OSAKA」に対応するビルトインレンズマ スクの複素透過率を、焦点位置の異なる5層のシードレイ ヤーを用いて設計し、その透過光の三次元空間での露光強 度分布を求めた結果を示す.図10a)は、位相調整しない場 合を示す.文字「K」の斜め部分がシード層に対応して階 段状となっている.また、文字「S」の平行な3本ラインは、 一部で干渉によると思われる分離不良が見られる.このた め、位相を調整した場合の結果を、図10b)に示す.結像性

はやや劣化するが、文字としては判別できるレベルである.

図9 シードパターン用いた A 型文字構造の 三次元転写像(複素透過率の離散化なし)

このように、シードパターンを重畳させたビルトインレ ンズマスクにより、三次元結像の可能性が示された.

4.2 ビルトインレンズマスクによる三次元結像の検証³⁾

三次元結像を実験的に検証するため、ビーム光源に紫外 線をもちいて、ネガ型の紫外線感光性レジストを照射し、 これを現像してその形状を調べた.レジストは、半導体リ ソグラフィ用の厚塗りレジスト SU8(日本化薬)を用いた. 露光現像後のレジスト形状を、あらかじめ計算した三次元 光強度分布と比較することにより、三次元結像を検証した.

検証には、レジスト現像中の現像液の流れや、乾燥度の 表面張力による基板との固着を回避するために、ピラミッ ド型骨組み構造を用いた. 図 11 a)に示すように、複数の シードパターンをピラミッド型の骨組み構造に沿って配 置した. これより図 11 b)に示すようなビルトインレンズマ スクの構造を作製し、これを用いて、露光実験を行った.

ピラミッドの高さや、レジスト膜厚、マスクとレジスト とのギャップを変化させたものを設計・作製した.シード パターンのサイズは 500nm 角とし、四角錐の高さは 30,μm, 底辺の1辺は 25μm とした.マスクの最小ピクセルサイズ は 250nm とし、複素変調は、0 ならびにπに離散化した.

図12に、ギャップ40µm、レジスト厚さ30µmで設計・作 製した結果を、図13に、ギャップ60µm、レジストの厚みを 45µmとした場合の結果を示す.

図 12 a),13a) に、レジスト中での光強度分布のシミュレ ーション結果を、図 12 b),13 b)には、実験結果を示す.

いずれの条件下においても、ピラミッドフレーム状の三 次元構造体が、一回の紫外線照射により形成できており、 シミュレーションによる結像予測結果と一致した.

このように,ビルトインレンズマスクによる三次元結像 が検証できた.

a) 光強度分布のシミュレーション結果

b) 実験結果

 図 12 ピラミッドフレーム構造の結像シミュレーション と実験結果 (設計ギャップ 40µm,レジスト膜厚 30µm)

 図13 ピラミッドフレーム構造の結像シミュレーション
と実験結果 (設計ギャップ 60µm,レジスト膜厚 45µm)

4.3 ビルトインレンズマスクによる三次元ビーム加工 の可能性⁴⁻⁶⁾

シミュレーションにより,多様な三次元形状加工の可能 性について検討した.ここでは,円筒構造,交差構造についてシ ミュレーション解析をおこなった.

円筒状にシードを並べて露光すると、光路長が等価となる 円筒の中心軸上にリング状に結像が生じる(図 14(a)). これを 回避するため、螺旋状にシード層を配置 (図 14(b))することに より、不要な干渉を相殺して集光させることができた.

次に、上下に交差する構造について検討した(図 15). 交差に 光を結像させる場合上下パターンの干渉により,構造の分離 を回避するようにパターン間ギャップを最適化した,これによ り,上下に交差した立体構造が作製できることがわかった.

図15 立体交差構造のシミュレーション結果

4. あとがき

ー括照射による三次元ビーム加工を実現するため,空間 に結像しようとするビームの波面を,複素透過率をもつ透 過板(ビルトインレンズマスク)により再現する新しい概 念によるビーム照射システムを提案した.

この方法により、ピラミッド型フレーム構造の露光実験 を行い、三次元露光を実験的に検証した.

今後,紫外線,レーザービームをはじめ,超音波の三次 元結像など,干渉性ビームへの多様な応用展開が期待でき るものと考える.

謝 辞

本研究は、公益財団法人天田財団からの一般研究助成に より実施した研究に基づいていることを付記するととも に、同財団に感謝いたします.

参考文献

- N. Ueda, M. Sasago, H. Kikuta, H. Kawata, Y. Hirai,' Builtin Lens Mask Lithography (Challenge for high-definition lens-less lithography)' J. Vac. Sci. Technol B 32 (2014) 06F702.
- 2) T. Tanaka, H. Kikuta, H. Kawata, M. Yasuda, M. Sasago, Y. Hirai, 'Three-dimensional imaging approach using built-in lensmask lithography' Microelec. Eng., 158 (2016) 85–90.
- 3) T. Tanaka, D. Sugihara, M. Sasago, H. Kikuta, H. Kawata, Y. Hirai, 'Three-dimensional photolithography using built-in lens mask', J. Vac. Sci. Technol. B 35(2017) 06G308.
- 4) T. Tanaka, H. Kikuta, M. Yasuda, H.i Kawata, M. Sasago, Y. Hirai, 'Computational study on novel proximity lithography for deep stepped substrate by Built-in Lens Mask (BILM)', Abstract of The 25th Symposium on Photomask and NGL Mask Technology, (Yokohama, 2018) 10A-4 (Invited).
- 5) D. Sugihara, A. Misaka, K. Sato, H. Kikuta, H. Kawata, M. Yasuda, M. Shirai, M. Sasago, Y. Hirai, 'Computational study on micro 3-dimensional imaging using novel photolithography', 63rd Int. Conf. on Electron, Ion, and Photon Beam Technol. & Nanofabrication (Minneapolis, 2019) P1-15 (Invited).
- 6) A. Misaka, D. Sugihara, K. Sato, M. Sasago Y. Hirai, 'Builtin Lens Mask Technology for Generating Three Dimensional Image based on Computational Lithography' J. Photopolym. Sci. and Technol., 32 (2019) 345-353.