

摩擦攪拌改質による 高強度難燃性マグネシウム合金の創製

美彦*

植松

Y. Uematsu

1. まえがき

マグネシウム (Mg) 合金は軽量構造材料であるが,反応 性が高く,切削屑などが爆発的に反応する危険性が指摘さ れている. そこで, 合金元素としてカルシウム (Ca) を添 加した難燃性 Mg 合金が開発された¹⁾. 同合金は特に輸送 機器分野における軽量構造材料として期待されているた め,その疲労挙動の把握が重要であり,いくつかの研究例 がある²⁾⁻⁴⁾. それらによると, 難燃性 Mg 合金では Ca や Mn を主成分とする金属間化合物 (Intermetallic compound:IMC) が存在するため、IMC を起点として疲労き 裂が発生し、十分な疲労強度が得られないとされている. 近年,摩擦攪拌接合 (Friction Stir Welding: FSW) を微 視組織の改質に応用した摩擦攪拌改質(Friction Stir Processing: FSP) が, 強塑性加工法の一種として注目さ れている. FSP を利用すれば, 強塑性変形によって粗大な IMC を粉砕するとともに、組織の微細化や均質化が可能と 考えられる.

本研究では、Caを0.2wt%含有する難燃性Mg合金AMX602 を供試材とし、FSPによって組織の均質化を図るとともに、 FSPを施した材料の疲労挙動について検討した.また、FSP 後の後熱処理の影響についても検討した.

2. 実験方法

2.1 供試材および組織改質条件

供試材は難燃性 Mg 合金 AMX602 であり,化学組成は A1: 5.82, Zn: <0.001, Mn: 0.27, Ca: 2.06, Si: <0.01, Cu, Fe, Ni: <0.001, Mg: Bal. (wt%)である. 板厚 5 mm の納 入圧延板に対し,摩擦攪拌改質 (FSP) を施した. FSP 用 ツールは,逆ネジを切った長さ 4.7 mm, 直径 8 mm のプロ ーブと, 直径 18.5 mm のショルダーからなる. 事前にツー ルの回転速度と送り速度を変えて組織改質試験を行い,貫 通欠陥などが生じないような条件を決定した.その結果, 本研究ではツール回転速度 800 rpm,送り速度 300 mm/min を改質条件とした.

2.2 試験方法

組織観察は、材料を研磨後、ピクリン酸 10 g、無水酢 酸 20 mL, エタノール 100 mL, 純粋 20 mL の腐食液でエッ チングし、光学顕微鏡と電子顕微鏡 (SEM) で観察した. 硬さはマイクロビッカース硬さ計を用い、保持荷重 0.98 N, 保持時間 30 秒で測定した.疲労試験には容量 20kN の電気 ー油圧サーボ式疲労試験機を用い、応力比 R=-1,繰返し 速度 f=2Hz の正弦波で行った.疲労試験片は、平行部幅 6mm,平行部長さ 12mm の板状試験片であり、FSP 方向と試 験片長手方向が一致するように FSP 材から採取した.試験 片ゲージ部が改質部と一致するよう、板厚上下を削除し、 最終的な板厚は 2.5mm とした.

3. 実験結果および考察

3.1 微視組織様相

図1に納入材の組織と、EDXによる化学組成の分析結果 を示す.図1(a)の濃い灰色の部分は金属間化合物(IMC) であり, 圧延行程によって不均一に分布していることがわ かる.また平均結晶粒径は11 μ mであった.図1(b),(c) は代表的なEDX分析結果であり,IMCは比較的寸法の大き いAl-Mn系と、数 μ m程度のAl-Ca系に分類され、定量評 価からAl-Ca系IMCはAl₂Caと同定された.Al-Mn系のIMC については、図1(b),(c)に示すように、長さが100 μ m 程度ある細長いものが多く観察された.一方,図2はFSP 材の板厚中心近傍の微視組織である図2(a)に示すように、

図1 納入材の微視組織: (a) 光学顕微鏡, (b) Al 分布, (c) Mn 分布.

*岐阜大学 工学部機械工学科 教授

図2 FSP 材の微視組織: (a) 光学顕微鏡, (b) Al 分布, (c) Mn 分布

IMC の不均一分布が消失し,かつ平均結晶粒径が 6.9 μ m まで微細化した.このような結晶粒の微細化は,FSP 時の 動的再結晶によるものである.図2(b),(c)はEDXによる 分析結果を示すが,図1(b)で見られたような粗大な Al-Mn 系 IMC は攪拌域では約10 μ m に粉砕されており, Al₂Ca も均一に分散していることが確認された.すなわち FSP によって,粗大な IMC の粉砕と IMC 分布の均一化,お よび母地結晶粒の微細化を達成することができた.

図3は、納入材の横断面(圧延方向に対して垂直な面) で観察した組織の EBSD による結晶方位解析結果である. 図3(a)は逆極点図(IPF 像)であり、(b)、(c)が代表的 な結晶方位を示している.また、(d)は(0001)面および (10-10)面の極点図である.図(d)からわかるように、hcp 構造の底面である(0001)面が,圧延面に対してほぼ平行と なっていることがわかる.このように、圧延によって顕著 な集合組織が形成されているが、(0001)面が圧延面と平行 となるのは、Mg 合金の熱間圧延組織として一般的とされ ている⁵⁾.一方、図4(a)は FSP 材の横断面組織であり、 図中の破線内部が実際に FSP によって材料が攪拌された

(強塑性流動が生じた)部分である.また、後述の疲労試 験片の断面を一点鎖線で示してある. (a)中の矢印 A およ び B 部における EBSD 解析結果をそれぞれ(b), (e) に示し ている. まず A 部 (図 4 (b), (c), (d)) では, IPF 像, 代表的な結晶方位, (0001) 面および(10-10) 面の極点図か ら,底面が断面に対してほぼ平行(試験片長手方向に対し て垂直)な集合組織が形成されていることがわかる.一方 B部(図4(e), (f), (g), (h))では,底面は断面に対し て約45°傾いた状態となっている.一般的にMg合金のFSW では,回転するプローブの円周方向に平行に底面が配向さ れるとされている⁶⁾.本研究のAMX602においても、ほぼ 同様の集合組織が形成されていた.図3の極点図(図3 (d)) と図4の極点図(図4(d)および(h)) を比較すると、 底面の集積は図4の方が強度は高く, FSP によって強い集 合組織が形成されることを示唆している.また, IPF 像 (図 3 (a) および図4 (a), (e))の比較から, FSP 材では攪拌 部の結晶粒が微細化していることも確認できる.

3.2 機械的性質

張り試験を行ったところ,引張り強さ σ_B は納入材で247 MPa, FSP 材で199 MPa となり, FSP によって強度の低下が

図3 納入材の結晶方位か移籍結果: (a) IPF 像, (b) 結晶方位 1, (c) 結晶方位 2, (d) (0001)面 および(10-10)面の極点図.

見られた.また図5は、板厚中央部における硬さ分布であ る.納入材の硬さを実線で示しているが、FSP 材は結晶粒 が微細化しているにもかかわらず硬さが低下している.引 張り強さや硬さの低下は納入板が加工硬化状態にあるの に対し、FSP 材ではFSP 時の入熱と塑性流動による動的再 結晶によって転位密度が低下したためと考えられる.さら に AMX602 は時効性があるとされ、入熱によって析出硬化 物も再固溶した影響も考えられる.そこで、FSP 材に対す る後熱処理として 170 ℃ で 40 時間の時効を行った.図5 には時効材の硬さも併記している.後熱処理によって微細 化の進行している領域では母材と同程度まで硬さが上昇 していたが,全体としては母材よりも低い硬さに留まって いる.

3.3 疲労試験

図6に疲労試験における S-N曲線を示す. FSP 材 (△印) では,結晶粒が微細化し,さらに組織が均一化しているに もかかわらず,納入材(○印)よりも疲労強度が低下して いることがわかる.また,後熱処理(時効)を施した場合 (□印),FSP 材よりも疲労強度は向上するが,母材より もわずかに低い.これは前述のように,FSP によって材料 が軟化し,後熱処理でも十分な硬さ上昇が得られないため である.さらに図4(a)の試験片断面では,中央部では底 面が荷重軸に対して垂直となる(図4(b))が,試験片端 部では底面は荷重軸に対して約45°の角度を呈している (図4(e)).hcp 構造を有するMg 合金の優先すべり面が 底面であることを考えると,図4(e)で示した集合組織で は,荷重軸に対する底面すべり系のシュミット因子が大き

図 4 FSP 材の結晶方位か移籍結果: (a) 巨視的様相, (b) A 部の IPF 像, (c) 結晶方位 1, (d) (0001)面および(10-10)面の極点図, (e) B 部の IPF 像, (f) 結晶方位 2, (g) 結晶方位 3, (h) (0001)面および(10-10)面の極点図.

いことになり,疲労強度に悪影響を与えることを示唆して いる.すなわち FSP 材と後熱処理材では,母材に比較して 材料が軟化していること,さらに試験片端部で疲労強度に 悪影響を及ぼす集合組織が形成されていることによって, 母材よりも低い疲労強度になったと考えられる.図7は, 断面上の硬さ分布と試験片断面の相対的な位置関係を示 している.図7(a)が FSP 材,(b)が後熱処理材であり,図 中の破線が攪拌部の境界,実線が試験片断面である(実際の試験片は研磨によって角が丸くなるので,その形状を実線に反映している).また赤い×印が疲労き裂発生箇所を示している.図より,まずは後熱処理によって硬さが全体的に上昇していることが確認できる.また,特に後熱処理材では,き裂発生位置が最軟化部と一致していないことに注意する必要がある.これは,疲労き裂発生を支配するの

図7 断面における硬さ分布と疲労き裂発生位置:(a) FSP 材,(b) 後熱処理材. ×印がき裂発生位置を示している.

が硬さだけではなく,上述のような集合組織も一因となっていることを示唆している.なお詳細な破面観察の結果, 野口ら²⁾が指摘したような IMC はき裂発生起点では確認されなかった.

図5および図7(b)の硬さ分布では、後熱処理によって 母材程度までに硬さが上昇しているのは中心近傍の狭い 領域であった.また、図4では攪拌部の中央で優先すべり 面である底面が、横断面に対して平行(荷重軸に対して垂 直)であり,疲労負荷荷重に対してすべりは作動しにくい. そこで,試験片断面と時効による硬さ上昇部位,底面が荷 重軸に対して垂直となる部位が一致するよう,試験片平行 部を 2mm に減じた試験片を作製し,疲労試験に供した.す なわち,試験片断面は図7(b)中の実線のようになる.そ の疲労試験結果は図6中に◆印で示してあるが、母材より も疲労強度が若干向上していることがわかる. すなわち集 合組織や硬さ分布に応じて選択的に試験片を取得するこ とで、母材よりも高い疲労強度が得られた.しかしながら、 母材に対する強度上昇の度合いはわずかであり,試験片端 部付近でシュミット因子の大きな組織が存在しているた めと考えられる.

4. まとめ

本研究では、Ca を添加した難燃性 Mg 合金 AMX602 に摩 擦攪拌改質(FSP)を施し、微視組織、集合組織、機械的 性質および疲労強度に及ぼす FSP と後熱処理の影響につ いて検討した.得られた結果は以下の通りである.

- 1. AMX602 の納入材に FSP を施すことにより,粗大な金 属間化合物(IMC)は粉砕され,結晶粒が微細化すると ともに IMC 分布も均一化された.しかし,硬さや引張り 強さは FSP によって低下した.後熱処理は FSP 材の機械 的性質を向上させたが,それでも母材よりも低強度とな った.
- 2. 結晶方位解析により、納入材には圧延面に対して hcp 構造の底面が平行となる集合組織が形成されているこ

とが判明した. FSP によって集合組織は変化し,底面が 回転するプローブの周方向に平行となる集合組織が形 成された.

- 3.疲労き裂は、必ずしも硬さが最小となる部位で発生す るわけではなかった.これは、底面が荷重軸方向に対し て45°に近いような角度を持った集合組織が疲労き裂 発生に影響を与えるためである。
- 4.機械的性質と同様,FSP 材の疲労強度は母材よりも低下したが、これは軟化と集合組織に起因している.後熱処理によって疲労強度は母材と同程度まで向上したが、わずかに低かった.しかし、硬さが母材と同程度となっている箇所から試験片を採取した場合、疲労強度は母材よりも向上した.

謝 辞

本研究は、公益財団法人天田財団からの一般研究助成によ り実施した研究に基づいていることを付記するとともに、 同財団に感謝いたします.

参考文献

- M. Sakamoto S. Akiyama K. Ogi: Journal of Materials Science Letters, 16 (1997), 1048.
- 2)北原陽一郎・池田健介・島崎洋明・野口博司・坂本 満・ 上野英俊:日本機械学会論文集(A編),72-717 (2006), 661.
- 3)K. Masaki · Y. Ochi · K. Kurata · T. Hirasawa · T. Matsumura · Y. Takigawa · K. Higashi : Materials Transactions, 46 (2008), 1148.
- 4) T. Sakai S. Kikuchi Y. Nakamura N. Ninomiya: Applied Mechanics and Materials, 782 (2015), 27.
- 5) S. H. C. Park Y. S. Sato H. Kokawa : Metallurgical and Materials Transactions A, 34 (2003), 987.
- 6) S. H. C. Park•Y. S. Sato•H. Kokawa:Scripta Materialia,49 (2003), 161.