正誤表

2021 年 11 月に発行しました 天田財団 助成研究成果報告書 2021 において、掲載内容に誤りが ございました。

謹んでお詫び申し上げますとともに、下記のとおり訂正させていただきます。

正誤箇所	誤	正
P43 下段	微細接合, 異種材料接合, 傾斜機能	赤外 CW レーザー加熱, セラミック
AF-2018238-C2	組成 3D プリンティング, 攪拌プロ	ス薄膜,高温超伝導薄膜
奨励研究助成	セス	
(若手研究者)		
土屋 雄司 氏	本研究では、より高強度かつ高信頼	高温超伝導体 REBCO 薄膜は、液体
キーワード	な接合を実現するために、レーザ溶	窒素温度での高性能電力機器への応
研究概要	融と攪拌プロセスとを複合したレ	用が期待されており、配向薄膜化技術
	ーザ加熱攪拌技術(Laser Melting	によって高性能化が行われてきた。し
	Stir Process; LMSP) を開発してい	かし、膜厚の増加とともに結晶の配向
	る.LMSPでは、レーザにより急加	が崩れ、膜厚の上限が課題であった。
	熱・溶融させた材料を空冷するので	本研究では、赤外 CW レーザーおよ
	はなく,攪拌しながら凝固させてい	びセラミック輻射ヒーターを組み合
	く. このようにすることで、半凝固	わせた表面レーザー加熱装置を開発
	状態を経て、材料が凝固する. 半凝	した。REBCO 薄膜の c 軸配向膜厚の
	固で溶融させると、材料内の空隙や	増加および臨界電流 Ic の向上を目的
	結晶粒の粗大化を抑制できること	として、この装置を高温超伝導体
	が報告されている.LMSP は,溶融	REBCO 薄膜成長装置へと組み込む
	させた材料を攪拌することで、半凝	ことで、膜厚の 8 μm までの成膜を行
	固状態を創り出すことで, 機械的特	った。結果、8 μ m においても a 軸配
	性の向上を目指すものである. 提案	向粒混在率が 15%以下であり、最大
	手法(LMSP)の実現可能性を実験	で 1,500 A/cm-width 以上の高い Ic
	的に検証するとともに,接合部材の	を得た。本研究で開発した表面レーザ
	機械的性質やそのばらつきを、レー	ー加熱法を用いた REBCO 薄膜にお
	ザ溶接による接合部材と比較しな	ける Ic の向上は、電動飛行機や医療
	がら明らかとする.	用 MRI への応用が期待されている高
		温超伝導線材の特性を飛躍的に向上
		する手段として期待される。