超高強度 TRIP 鋼板のスポット溶接および

プレス加工に及ぼす遅れ破壊疲労特性

長野工業高等専門学校・機械工学科

教授 長坂 明彦

(平成 27 年度 一般研究開発助成 AF-2015040)

キーワード: TRIP 鋼板,スポット溶接,残留オーステナイト特性

1. はじめに

近年,環境と衝突安全性を両立させる必要性から,水素 燃料自動車および電気自動車等の車体軽量化のために, 1470MPa 級以上の強度レベルの超高張力薄鋼板(超ハイテ ン)のニーズが高まっている。また,1180MPa 級以上の強 度レベルの超ハイテンにおいては,水素脆化による遅れ破 壊が問題となる。そのため,プレス成形時や溶接時の残留 応力によって自動車部品が遅れ破壊(置割れ)を発生する 可能性がある。しかしながら,自動車用超高張力 TRIP 鋼 板のスポット溶接性に関する研究は十分に行われていない。

そこで本研究では、自動車用超高張力 TRIP 鋼板のスポ ット溶接性を明らかにすることを目的として、単軸引張試 験、せん断試験、十字引張試験、スポット溶接引張試験お よびアコースティック・エミッション (AE) 測定等により 検討した。

2. 実験方法

2.1 供試鋼および引張試験片

供試鋼には、0.2C-1.5Si-1.5Mn (mass%)の化学組成を有 する冷延鋼板(板厚 1.2 mm)を用いた。熱処理後の試験片 を、母相をマルテンサイトとした TRIP 鋼¹⁾(TM 鋼, 900°C×1200sのy域焼鈍と250°C×1000sの等温変態処理), 母相をベイニティックフェライトとしたTRIP 鋼(TBF 鋼, 900°C×1200sのオーステナイトy相域焼鈍と400°C×1000s のオーステンパ処理),母相をポリゴナルフェライトとし た TRIP 鋼(PF 鋼, 780°C×1200sの二相域焼鈍

(400°C×1000sのオーステンパ処理) とそれぞれ呼ぶこと とする。表1にスポット溶接条件を示す。引張試験,せん 断試験および十字引張試験には引張試験機(クロスヘッド 速度1mm/min)を用いた。

①引張試験

図1 にスポット溶接試験片を示す。JIS 13B 号試験片で図 1 に示すような平行部の長さ 60 mm×板幅 12.5 mm×肩曲 率半径 20 mm×板厚 1.2 mmの試験片と 20mm 角のタブ板 (tab) をスポット溶接した。

引張試験には、引張試験機によってクロスヘッド速度 1mm/minで行った。また、母材試験片に、tab(20×20mm) を重ねてスポット溶接した試験片²⁾を溶接試験片と呼ぶこ ととし、それぞれTM-tab、PF-tab、TBF-tabと表す。また、 水素吸蔵を行ったTM 鋼の溶接試験片をTM-tab-Hと表す。 ②引張せん断試験

JIS Z 3136 に従って,長さ 100 mm×板幅 30 mm×板厚 1.2 mmの試験片を2 枚重ねあわせ,スポット溶接を行った。

表1 スポット溶接条件

電極	Material: Cu-Cr				
	DR16×40R				
加圧力	4.6 kN (0.4MPa)				
電流値	<i>I=</i> 6.5 kA				
アップスロープ	2 サイクル×60Hz				
初期加圧時間	20 サイクル×60Hz				
通電時間	16 サイクル×60Hz				
保持時間	10 サイクル×60Hz				

③十字引張試験

JIS Z 3137 に従い、150 mm×幅50 mm×板厚1.2 mmの 試験片を十字に2 枚重ねあわせ、スポット溶接を行った。

2.2 アコースティック・エミッション (AE) 計測

図2にAEセンサを示す³。破壊のメカニズムを明らか にするために、引張試験と合わせてAE計測を行った。AE センサには共振型のセンサを用いた。周波数範囲が100~ 1000Hz, ゲインが 40dB, しきい値 43dB で実験を行った。 AE センサは引張試験片に取り付け,引張試験の開始と同時にAE の測定を行った。

2.3 水素吸蔵試験

図3に水素吸蔵試験を示す。水素チャージには、陰極チャージ法(陽極:白金)によって水素を吸蔵させた⁴⁾。水 素チャージ部分は、マスキング処理後のJIS 13B 試験片の tab 両面の面積(20mm×20mm×2=80mm²)とした。

・水素吸蔵の条件

電流密度 10A/m²として, tab の総面積は 800mm²より, 電流値は 10×10³×800×10⁻⁶=8mA とした。水溶液は水 1 リットルに 3%の NaCl (NaCl は 30g), 1%の NH4SCN (NH4SCN は 10g) を混合した。水溶液に試験片を入れ水 素吸蔵を開始してから 48 時間水素を吸蔵した。

3. 実験結果および考察

表 2 に供試鋼の機械的特性を示す。また、図 4 に応力 σ 一 ひずみ ε 曲線を示す。図 5 に溶接試験片破断部 (a)TM-tab-H および(b)TM-tab を示す。図 6 に応力 σ -ひず み ε 曲線 (TM 鋼)を示す。図 7 に応力 σ および AE エネル ギーRMS と時間 T の関係を示す。図 8 にせん断力 TSS と変 位 S の関係を示す。図 9 に十字引張力 CTS と変位 S の関係 を示す。

図2 AEセンサ

表2 供試鋼の機械的特性

steel	YS (MPa)	TS (MPa)	UEl (%)	<i>TEl</i> (%)	YR	TS×TEl (GPa%)
TM	927	1462	7.7	9.9	0.63	14.5
TBF	806	1069	5.1	8.2	0.75	8.8
PF	586	861	27.7	32.4	0.68	27.9

図4より、単軸引張りのTM 鋼はスポット溶接部近傍で 破断したが、PF 鋼およびTBF 鋼は母材破断した。

図5 溶接試験片破断部((a) TM-tab-H, (b) TM-tab)

図7 応力σおよびAEエネルギー*RMS*と時間*T*の関係 (TM-tab-H)

図8 せん断力 TSS と変位 S の関係

図6より、水素チャージしたTM 鋼はスポット溶接部近傍 で破断したが、水素吸蔵の影響は見られなかった(図 5)。 これは、オーステナイトのマルテンサイト変態を抑制して 水素の破壊起点への拡散を抑制することが考えられた。図 7より、時間 t=100s で、RMS が急激に検出されること が分かる。これは、TM 鋼の最高荷重点の直前に、き裂 が発生することを示唆する。図8および図9より、せん断 カ TSS および十字引張力 CTS ともに変位 S より、TM 鋼、 TBF 鋼および PF 鋼の順に荷重低下することがわかる。こ れは、母材強度レベルが一因と考えられる。

4. 結言

(1)単軸引張りのTM 鋼はスポット溶接部近傍で破断したが、 水素吸蔵によりスポット溶融部で破断したが、引張強さは 低下しなかった。遅れ破壊の影響は見られなかった。

(2) 単軸引張りの TM 鋼はスポット溶接部近傍で破断した が、PF 鋼および TBF 鋼は母材破断した。

(3) せん断力 TSS および十字引張力 CTS は TM 鋼, TBF 鋼および PF 鋼の順に荷重低下した。これは、母材強度レ ベルが一因と考えられた。

謝辞

最後に、本研究にあたり、ご支援いただきました公益財 団法人 天田財団に対し、深く感謝の意を表すとともに、 東北大学金属材料研究所 北條智彦先生、長野工業高等専 門学校 古澤拓郎氏、花岡伸哉氏、市川亮太郎氏に併せて お礼申し上げます。

参考文献

 K. Okita, J. Naito, T. Murakami and S. Ikeda: 4th International Conference HOT SHEET METAL FORMING of HIGH-PERFOR MANCE STEELCHS, Lulea, Sweden, (2013), 137.

 T. Okada, K. Hamada, H. Fujimoto, H. Ueda, M. Yasuyama and M. Uchihara: Japan Welding Soc. Meeting, 90, (2013), 1.
M. Mukherjee, O. Nath Mohanty, S. Hashimoto, T. Hojo and K. Sugimoto: ISIJ Int., 46 (2006), 1241.

4) T. Hojo, S. Song, K. Sugimoto, A. Nagasaka, S. Ikeda, H. Akamizu and M. Mayuzumi: Tetsu-to-Hagane, 90 (2004), 177.