レーザプロセッシングの高度化のための位相回復法による

in-situ 集光ビーム診断法の開発

東京大学 大学院工学系研究科 准教授 三村 秀和 (平成 26 年度一般研究開発助成 AF-2014219)

キーワード:集光波面計測,タイコグラフィ,位相回復

1. 研究の目的と背景

近年のレーザ加工の CFRP(Carbon Fiber Reinforced Plastics)への応用,レーザ走査による3次元粉末成形法(3次元プリンタ),フェムト秒レーザを利用した超微細加工など,レーザプロセッシングは近年大幅な広がりを見せている.これらの発展は、レーザ光源のハイパワー化が一因となっている.

こうした光源のハイパワー化や加工の高分解能にとも ない、レーザ発振をする光源だけでなく、光学系も複雑に なってきている.この中で、光学ミラーやレンズなどの熱 変形は、レーザビームの波面を乱すことになり、設計どお りのビームサイズやパワー密度を実現できず、レーザ加工 プロセスや積層プロセスにおける空間分解能の悪化の一 因となっている.

レーザプロセッシング装置上において, in-situ で高精 度にレーザビームの波面診断ができれば, その光学系にお ける問題点を抽出することができ, 更に, アダプティブ光 学系の導入により補正を行うことができる. 現在, シャ ックハルトマン法などにより離れた位置での波面計測が 行われているが, デフォーカスやチルト成分の波面成分の 診断は原理上不可能であり, レーザプロセッシングにおい て実際に使用する焦点位置でのビーム径や強度プロファ イルの診断が必要となってきている.

2. タイコグラフィ法

2.1 目的

本研究では、2004 年 Rodenburg により提案されたタ イコグラフィ法¹⁾と呼ばれる位相回復法を集光点位置で の強度と集光ビームの波面誤差の in-situ 診断法を開発す る.そして、集光された集光ビームの強度分布の計測を行 い、様々なレーザプロセッシングにおいて、本手法が有用 であることを実証する.

2.2 測定原理

図1に、タイコグラフィの概要を示す.光の集光光学系 における焦点面と十分離れたスクリーン上では、 Fraunhofer 近似を満たす.この光学系において、集光点 近傍に強度遮蔽物体もしくは位相物体を挿入し、ステップ 移動させ複数の背面での散乱強度分布を計測する.ステッ プ毎に得られるすべての散乱強度分布と挿入物体の位置 情報を用いることで、焦点面上での位相分布を回復させる. この手法は強度情報量を大幅に増大させることができ、 従来の位相回復計算よりも測定ノイズに強く,計算精度が 高くなる.タイコグラフィ法は,挿入物体の情報を知るこ とができるため,電子顕微鏡,X線顕微鏡での高分解能化 手法の一つとして開発された.

2.3 特徴

本手法の特徴は、可干渉性の光に物体を挿入し、物体の 位置と散乱強度の情報から位相を決定することであり、そ の達成した測定精度は干渉計に匹敵している.干渉計等に 比べ光学系が簡便であり、将来、様々なプロセス装置にそ のまま導入可能である.レーザプロセッシングに利用され る高強度レーザの光学系の診断は近年課題となっており、 本研究内容はその解決の一旦を担う.

図1 タイコグラフィ法の概要

3.タイコグラフィ法による集光波面計測システムの構築3.1 光学系

タイコグラフィ法による高精度波面計測システムを開 発するために, He-Ne レーザを用いた集光光学システムを 構築した.図2にその光学系を示す.

本光学系は、光源をHe-Ne レーザから点光源とするため のピンホールを通過し、平面ミラーで複数回反射したあと、 ミラーにより集光される.その焦点にピンホールが設置さ れ、背面に CCD カメラが配置されている.ピンホールの直 径は約20µmとしている.ピンホールは、XYZ ステージに 搭載されている.ピンホールが焦点面上で XZ スキャンし たとき、変化強度分布を CCD カメラで取得する.測定さ

図2 タイコグラフィ法開発のための光学系

れた強度データが一致するように、集光ビームの位相分布 が回復される.

3.2 計算の高速化

本手法は、フーリエ変換、フーリエ逆変換の反復計算が 必要であり、計算速度の点から実用的ではなかった.本研 究では、GPGPU (General-purpose computing on graphics processing units)を用いた高速計算手法を導入している. この導入により、計算スピードが大幅に向上し、リアルタ イムでの波面、強度分布計測が可能となった.

3.3 位相回復アルゴリズム

本研究で提案した位相回復手法の概略を図 3, 図 4 に示 す. 焦点面上のピンホールから伝播する複素波動場と CCD 面に到達する複素波動場の関係は,基本的にフーリエ変換 の関係にあると言える.タイコグラフィ法を含む位相回復 計算は, CCD 面と焦点面の間でフーリエ変換と逆フーリエ 変換を繰り返す. 複素波動場は,位相分布と強度分布で表 現される.繰り返し計算内で,CCD 面内の強度分布を計測 データに置き換える.位相分布は,反復計算内で更新され ていく.これを繰り返すと測定された強度分布と一致する ように位相分布が変化していく.タイコグラフィ法では, 使用する強度分布の枚数を大幅に増加させることで,位相 回復の精度を向上させることが可能である.

3.4 空間分解能の向上のための工夫

レーザの集光ビームを高精度に評価するためには,高い 空間分解能で集光ビームの複素波動場を決定する必要が ある.

焦点面と CCD 面の関係はフーリエ変換の関係である. 焦 点面の計算上の分解能を向上させるためには, CCD 面にお いて,より広角に散乱する光を観察しなければならない. しかしながら, CCD の撮像面の大きさは有限であるため測 定対象の集光素子の NA が高い場合,これは困難である. 計算上の CCD 面の範囲をセンサ外部に拡大し,センサ部分 のみ強度値の更新を行うことも可能であるが,その場合, センサ外部の領域に周期的なノイズが発生する.

この実験上の制約に対応するために、図3のように、焦 点面と集光素子の出口開口面の間における波動場の反復 計算を追加している.集光素子の出口開口面の外側には、 強度が存在しない.したがって、開口の形状領域を拘束条 件として追加しても物理的に問題がない.このように、集 光素子開口の外側における光強度をゼロとすることで、位 相回復計算の安定性を大幅に向上できた²⁰.

図4 計算アルゴリズム概念図

(c)提案手法により回復される波動場強度
図5 CCD 面における強度分布の比較

その結果,図5(c)に示すように,CCD面上の計算範囲を, 強度分布を取得できていない領域に周期ノイズを発生さ せることなく拡大することができた.

ー般にタイコグラフィ法では,波動場伝播にフラウンホ ーファ回折を適用するが,これは NA が高い集光ビームの 記述に適さない.本手法ではこれに代わり,波動場の伝播 に対して高 NA 近似を適用した³⁾. 焦点面に挿入したピン ホールの直径が 18 µm と十分に小さいことから可能とな った.実用上は,事前に撮像した CCD 上の強度分布を非線 形座標変換し,この歪曲強度分布と焦点面における波動場 の間にフーリエ変換の関係を成立させ,計算時間の短縮を 図っている.

図6は、従来法と本研究で開発した手法の比較である. 従来法、すなわち図5(a)の領域のみを用いて位相回復計 算を行った場合、図6(a)のように空間分解能が悪い.本 研究で開発した手法を用いると、図6(b)のように大幅に 空間分可能が向上していることがわかる.この二つのデー タで使用している測定データは、まったく同じである.

このように、本研究では、図3、図4に示した計算アル ゴリズムの改良のみで、空間分解能を大幅に向上させるこ とに成功した.

(b) 提案手法図 6 焦点面において回復された波動場強度の比較

20 um

0.2

0.0

(arb. unit)

4. レーザ集光ビームの波面計測精度評価とアライメント 調整への適応

改良したアルゴリズムを用いて,実際に集光光学素子の ーの波面誤差を計測した.表1に計測条件の例を示す.図 2 に示すように,使用するビームには波長 632.8 nm の He-Ne レーザを選択している.光学素子と焦点面との距離 である焦点距離は 20nm であり,NA が約 0.1 の集光素子 を利用しており,回折限界の集光サイズは約 2.5 μ mで ある.測定精度を向上させるため,撮像枚数が 678 枚と多 くしている.

表1 波面計測条件

焦点面上のピンホール直径	18 μ m
焦点距離	20 mm
焦点面と CCD カメラの距離	41. 5 mm
ピンホールの 1step あたりの送り	3.9 $\mu{\rm m/step}$
撮像枚数	678 枚

集光ミラーのアライメントは X,Y,Z の手動ステージ三 軸と回転方向のゴニオステージ二軸を用いている.φ50μm ピンホール,虹彩絞り,回転楕円ミラー,CCD カメラの 中心を大まかに光軸に合わせた後にφ18μm ピンホールを 挿入する.

図 7 に本手法を用いてアライメント補正を行った結果 を示す.タイコグラフィ法によって回復した下流開口波面 を元に,集光ミラーの光軸に対する傾きによって起因する 波面収差を取り除く方向に調整する.図7(a)は調整前の集 光ミラーの出口開口での波面誤差プロファイルである.図 7(b)は,調整後の波面誤差プロファイルである.具体的に は,集光ミラーが光軸に対して傾いたことによるコマ収差 を補正した.このように,計測された波面誤差を元に集光 ミラーのアライメントを行うことができた.

この状態において, 焦点面におけるビームプロファイル を図 8 に示す. 集光ミラーの NA から試算される, 632. 8nm の He-Ne レーザの理想集光径は 2. 5µm である. これ らより, 波面計測時の光学系アライメントにおいて, 集光 ミラーは, 理想的に He-Ne レーザ球面波を集光している ことがわかる.

図8 アライメント補正後 測定された集光ビームの強度プロファイル

位置(µm)

5. 今後の展開

タイコグラフィ法は,顕微鏡として開発された手法であ り,集光ビームの波面計測は付加的なものであった.本研 究では,集光ビームの波動場を計測するため,位相回復ア ルゴリズムにおいて集光素子出口開口の外側が強度がゼ ロになるという工夫を行った.その結果,焦点面での集光 ビームプロファイルの波動場算出における空間分解能を 大幅に向上させることができた.そして,安定して集光ビ ームの波面計測を行うことができるようになった.

実際のレーザプロセッシングへの応用を見据え,集光ミ ラーのアライメント補正へ本手法を適応した.その結果, アライメント補正が可能であることを示し,理想的な回折 限界の集光を実現した.

レーザプロセッシングの多くはレーザを集光し,サンプ ルに照射する.サンプルは走査ステージが取り付けられて いる.本研究では,最も単純な形状としてピンホールを挿 入したが,微小開口であれば円形でなくてもタイコグラフ ィ法は可能である.したがって,焦点面から十分に離れた 位置に CCD カメラを装備さえすれば,本手法は適応可能で ある.本研究成果は,将来,様々なレーザプロセッシング において, in-situ での波面計測を可能にする.さらに in-situ で補正をすることで,理想的な集光状態を維持可 能なシステムを構築することにつながる.

謝辞

本研究は,天田財団研究助成において行われました. 感 謝申し上げます.

参考文献

[1] H. M. Faulkner, J. M Rondenburg, PRL 93 023903 (2004).

[2] 竹尾陽子,三村秀和,高 NA 集光素子の出口波面計測 方法及び出口波面計測システム,特願 2015-158575.

[3] Y. M. Engelberg and S. Ruschin, J. Opt. Soc. Am. 21, 11, 2135-2145 (2003).