レーザ溶接の凝固組織予測技術と凝固割れ発生防止法の開発

大阪大学 接合科学研究所 准教授 門井 浩太 (平成 26 年度一般研究開発助成 AF-2014215)

キーワード:レーザ溶接,凝固割れ,フェーズフィールド法

1. 研究背景

ステンレス鋼や Ni 基合金などは,耐食性や耐熱性など に優れるため,発電・化学プラントなど様々な用途に適用 されている.機械構造物の製造には,溶接接合が主として 適用されるが,溶接部は化学組成や溶接特有の急速な冷却 に依存したミクロ組織を呈し,各種特性はこの組織に大き く依存する.また,これらの材料は,溶接中の高温割れ, 特に凝固割れが発生しやすいことが知られている^{1,2}.

近年レーザ熱源の大出力・高品質化や溶接施工の生産性 向上や高品質化のため、レーザ溶接の適用拡大が急速に行 われている.レーザ溶接の適用によって、溶接速度の高速 化など、従来広く用いられているアーク溶接に比して溶接 部の温度分布や冷却速度が大きく異なる.そのため、組織 形態や生成相の選択、温度勾配の変化など、凝固現象も大 きく変化し、凝固割れはより発生しやすくなるとされてい る^{2,3}.そのため、レーザ溶接のさらなる適用拡大や、高品 質化、信頼性向上のためには、冷却速度の高速化や材料組 成が凝固現象(組織形成)や割れ感受性に及ぼす影響を詳 細に把握し、組織制御や割れ発生防止をすることが必要不 可欠となる.

溶接時の凝固割れは,凝固末期の残留液相に熱ひずみが 負荷されることで発生するため,凝固割れ発生の予測・防 止には,化学組成や溶接条件(冷却速度)等に応じた凝固 現象,特に液相の分布形態などの把握や予測が重要となる. レーザ溶接時の冷却速度は極めて早く,凝固現象を実験の みで検討,理解することは困難を極める.

これまでにミクロスケールでの凝固現象や組織形成過 程を対象とした計算手法として、モンテカルロ法やセル・ オートマトン法、フェーズフィールド法などが提案,検討 されてきた⁴⁸⁾.フェーズフィールド法は、デンドライト 成長の計算⁹にはじまり、溶質拡散方程式との連成や、多 相系の解析を目的としたマルチフェーズフィールド法¹⁰⁾ による組織形成計算へと拡張されてきている¹¹⁾.加えて、 近年は熱力学データベースとの連携による相変態の界面 駆動力や多成分系の相互拡散係数の導出によって、より実 用的な成分系における鋳造時やアーク溶接時の組織形成 過程の計算も行われている¹²⁻¹⁵⁾.しかしながら、これらの 計算に関する研究の多くは、定量性の高い実験値を用いた 検証は行われておらず、真の凝固現象を表現できているか は不明確である. そこで本研究では、マルチフェーズフィールド法による レーザ溶接過程での凝固現象や液相の残留形態の解析計 算を試みた.特に、溶接凝固割れ感受性評価試験などの実 験結果に基づいた検証を行い、溶接条件と計算因子の関係 などを検討した.

2. 解析方法

2·1 適用材料

本研究では、溶接凝固割れ感受性が高く、オーステナイ ト単相で凝固する SUS310S を用いた.表1に化学成分を 示す.

表1 化学組成(SUS310S, mass%)

С		Si	Si Mn P		S	
0.04	4	0.43	0.96	0.019	0.001	
Ni		Cr	Co	Fe		
20.1	3	25.19	0.09	Bal.	(mass%	

2·2 計算条件

計算条件を表2に、計算領域条件を図1に示す.解析に は MICRESS ソフトウェアを用い、熱力学計算ソフト Thermo-Calc と連成して凝固現象の計算を実施した.熱力 学データベースには TCFE7 を、拡散データベースには MOBFE2 を用いた. L/ γ 界面エネルギーは文献¹⁶より 0.3 J/m² とした.本研究では、レーザ溶接を対象としてお り、微細な組織形態を呈することから、十分な計算精度(界 面形状の表現)を得るため、計算の格子幅を 0.06 μ m, 界 面領域幅は3格子とした.計算の領域幅は、1 次デンドラ イトアーム間隔とし、両隅からの核生成とした.

表3にレーザ溶接条件を示す.溶接速度を0.2~1.5 m/minと変化させた.それぞれの溶接速度の冷却速度ならびに温度勾配は、図2に示すように高速度ビデオカメラを

表2 計算条件

Materials	SUS 310S					
Software	MICRESS					
Database	TCFE 7 and MOBFE 2					
Interface energy $\sigma_{\text{L-}\gamma}$, J/m^2	0.30					
Anisotropy of interfacial stiffness	0.10					
Interfacial mobility μ _{L-γ} , ×1.0E-10 m ⁴ /J/s	5 - 60					
Anisotropy of interfacial mobility	0.005 - 0.09					

図2 2次元温度分布

表 3 レーザ溶接条件										
Welding speed, m/min	0.2		1.0	1.5						
Cooling rate, K/s	745	848	2665	2896						
Temperature gradient, K/mm	223	254	316	342						
Temperature gradient direction	Centerline	Solidification crack								
Primary dendrite arm spacing, µm	10.0		6.0	5.7						

1.85 1.85

2.31

1385

用いたその場計測によって求めた 2 次元温度分布より導出した.温度勾配は、1 次および 2 次デンドライトアーム 間隔は、レーザ溶接中に液体 Sn 急冷により得た凝固凍結 組織より計測した.

本解析計算における計算因子となる界面モビリティと その異方性を変化させ、それぞれの溶接速度(冷却速度) における適正値を調査した.計算結果の検証には、トラン スバレストレイン試験にて評価した凝固割れ感受性や発 生した凝固割れや破面形態などを用いることで、実験結果 に基づいた計算因子の妥当性を調査した.

3. 解析結果

3・1 凝固過程における液相分布

Secondary dendrite arm spacing, µm

Liquidus temperature, °C

図3に計算結果の例として、745 K/s での定常域の相分布 を示す.デンドライト先端,すなわち液相線温度 T_Lから 温度低下とともに、2次デンドライトの生成・成長が確認 できる. さらに温度が低下すると, a)で示すように, 2 次 デンドライトアームが架橋し始める. 最初に架橋する温度 を T_Bとすると, T_L-T_B間では, 液相は溶融池と連続的に繋 がり,自由に移動できる. T_B以下では,温度低下とともに 架橋が多く発生することで,液相は膜状や島状を呈し,固 相線温度 T_sに達するまで分布する. 凝固割れを考えると, T_L-T_B間は,凝固割れ破面ではデンドライト形態(Type D) に, T_B-T_s間は凝固末期の痕跡であるくぼみの形態(Type F) に対応すると考えられる¹⁷⁾. そこで,T_L-T_B間および T_B-T_s間をそれぞれ,液相が溶融池と連続的に繋がる領域 L_P, 液相が膜状・島状となる領域 L_{FD},液相の存在する領域全 体を L_M (L_P+L_{FD}) 定義し,以降の計算結果と実験結果の 比較・検証を行った(図 4).

図4 凝固割れ破面(2665 K/s)

3・2 液相分布に対する計算因子の影響

冷却速度 745 K/s の条件において,計算因子である界面モ ビリティならびに界面モビリティ異方性を変化させて計 算を行った.はじめに計算結果の妥当性を検証するため, KGT モデル¹⁸⁾により算出した 1 次デンドライトの先端半 径と,凝固凍結組織より計測した 2 次デンドライトアーム 間隔それぞれを用い,計算結果との比較を行った.5.0~ 20×10⁻¹⁰ m⁴/J/s の範囲において,いずれの界面モビリティ においても,維持デンドライト先端半径,2 次デンドライ トアーム間隔ともに概ね一定値を示し,その値は,実験値 や KGT モデルによる計算結果と近い値であることがわかる

先端半径による計算の妥当性の検証

(界面モビリティ異方性:0.10)

 図 7 液相分布に対する界面モビリティ異方性の影響 (界面モビリティ: 1.0×10⁹ m⁴/J/s)

続いて、LM、LP、LM それぞれの液相の分布領域を計測 する一方,界面モビリティ異方性を変化させたところ,異 方性値の増大とともに 2 次デンドライトアーム間隔は減 少し、0.15以上では2次デンドライトは生成せず、冷却速 度等に依存した適正な異方性値が存在することと考えら れる.これらの傾向から、冷却速度に応じて計算因子の適 正値を導出することで、実験結果だけでなく、凝固理論 (KGT モデル)の両側面から計算結果の妥当性を証明で きることが示唆される. すなわち, 凝固現象や液相の分布 形態などの予測に適用可能であると考えられる結果を図 6および7に示す.界面モビリティの増大とともにそれぞ れの液相の分布距離は増大することがわかる.一方,界面 モビリティ異方性を変化させると, 0.15 付近までは, LMと LED は減少、LP は増加し、これ以上界面モビリティ異方性 が増加しても,液相の分布形態の変化はほとんどないこと が確認される.他の冷却速度においても同様の傾向が認め られた.

3・3 液相分布に対する冷却速度の影響

前項までの結果を基に、冷却速度を変化させ、それぞれ の冷却速度における計算因子の適正値を検討した.実験結 果を用いた検証のため、種々のレーザ溶接条件での凝固割 れ感受性評価試験で発生した凝固割れに沿った冷却速度 での計算を行った. 図 6、7 で示したように界面モビリテ ィの増大は液相全体の分布領域 LMを変化させ、界面モビ リティ異方性は LMを概ね維持したまま LP と LFD の割合 を変化させる傾向にあった.そのため、はじめに凝固割れ 長さと LMの比較によって界面モビリティの適正値を求め た後に、凝固割れ破面形態と Lp、LFD の比較によって界面 モビリティ異方性の適正値を導出した.

表3に示した848,2665,2896 K/s においてそれぞれの 適正値を導出し、これを用いて計算した液相分布範囲LP, LFDと、実際の凝固割れ破面から計測した長さとの比較を 図8に示す.冷却速度にかかわらず、計算結果は実験値と 概ね一致した値が得られている.このことから、実験結果 を用いた検証と計算因子の最適化によって、液相の分布形 態などの凝固過程を予測可能であると考えられる.

図 9 に各冷却速度における界面モビリティの適正値を 示す.界面モビリティは冷却速度の増大とともに増加する ことがわかる.界面モビリティは,界面移動速度,すなわ ち駆動力やデンドライトの成長速度に起因する.一般的に, デンドライトの成長が速い場合は,固液共存領域(mushy zone)は長くなる.そのため,高速な冷却である程,大 きな界面モビリティを要すると考えられる.

一方,界面モビリティ異方性は,界面モビリティの強度 や界面厚みに寄与し,デンドライト形状に影響を及ぼす. そのため,異方性が小さい場合では,2次デンドライトの 成長が顕著となり,1次デンドライト先端半径も大きくな る.これによって,2次デンドライトアームが架橋をし始 める温度は、高温側へ遷移する. そのため、図7で示した 様に、界面モビリティ異方性が増大とともに Lp は大きく、 LM および LFD は大きくなる. 加えて、異方性の増大によ って、2次デンドライトアームの生成は減少し、最終的に は消失すると考えられる.

3・4 液相分布形態予測と凝固割れ感受性

溶接凝固割れ感受性の定量的な評価では,凝固割れの発 生する温度範囲,すなわち凝固脆性温度範囲(Brittle Temperature Range, BTR)がしばしば用いられる.そこで, 図8で示した液相分布範囲を温度に換算した.図9に示す ように,いずれの冷却速度においても.液相温度範囲は, 凝固割れ発生温度範囲すなわちBTRと同等値が得られて いる.また,計算された温度範囲は冷却速度にかかわらず 近い値を示すことがわかる.この傾向は,凝固割れ感受性 評価試験(トランスバレストレイン試験)より得られた BTRとレーザ溶接速度の関係¹⁹と同様の傾向である.

ここで、図11に液相の分布形態と凝固割れ感受性の関

係の模式図を示す.本研究で算出した LP および LFD は, それぞれ「液相は溶融池と連続的に繋がり,自由に移動で きる領域」と、「液相は膜状や島状を呈し,独立した状態 で分布する領域」である.したがって,LPにおいて割れ発 生に寄与する引張方向の熱ひずみが負荷されても、溶融池 などからの液相のヒーリング効果によって,開口部に液相 が充填されやすいため、凝固割れは発生し難い.一方,LFD の高温側では、液相が溶融池から独立して分布しているこ とから、ヒーリングは生じず、一度開口するとそのまま凝 固割れとなる.低温側になると、2次デンドライトアーム の架橋や固相率の増大により、凝固割れは発生しにくくな る.したがって、液相の分布形態の遷移箇所となる TB を 予測することは、凝固割れ感受性の予測に対して重要にな ると考えられる.

4.まとめ

マルチフェーズフィールド法によるレーザ溶接過程で の凝固現象,特に液相の分布形態の解析計算を行った.溶

接凝固割れ感受性評価試験結果や凝固割れ破面形態など の実験結果による検証を行うことで,冷却速度に応じた計 算因子の最適値を導出できた.特に,従来にない高速な冷 却速度下でも,実測による冷却速度を用いた検証や,計算 因子とデンドライト形状などの凝固形態との関係を明ら かにすることで,計算因子の最適値が導出でき,液相の分 布形態を精度高く予測するが可能となる.

謝 辞

本研究は、公益財団法人天田財団 一般研究開発助成に より実施した研究に基づいていることを付記するととも に、同財団に深く謝意を表します.

参考文献

- 1) S. Kou: Welding Metallurgy, (2003), John Wiley & Sons.
- J.C. Lippold and D.J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, (2005), 186, John Wiley & Sons.
- K. Kadoi, A. Fujinaga, M. Yamamoto and K. Shinozaki: Weld World, 57 (2013), 383.
- P. Zhu and R.W. Smith: Acta Metallurgica Materialia, 40 (1992), 683.
- X. Liu, Q. Xu, T. Jing and B. Liu: Transactions Nonferrous Meal Society China, 19 (2009), 422.
- 6) T. Biben: Eur. J. Phys., 26(2005), 47.
- 7) R.S. Qin and E.R. Wallach: Acta Mater., 51(2003), 6199.

- T. Suzuki, M. Ode, S.G. Kim and W.T. Kim: J. Cryst. Growth., 237-239(2002), 125.
- R. Kobayashi: Modeling and Numerical Simulations of Dendritic Crystal Growth, Physica D, 63 (1993), 410.
- 10) I. Steinbach, F. Pezzola, B. Nestler, M. Seesselberg, R. Prieler and G. J. Schmitz: Phase Field Concept for Multiphase Systems, Physica D, 94 (1996), 135.
- 11) J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: The Multiphase-Field Model with an Integrated Concept for Modelling Solute Diffusion, Physica D, 115 (1998), 73.
- 12) D.J. Seol, K.H. Oh, J.W. Cho, J. Lee and U. Yoon: Acta Mater., 50 (2002), 2259.
- 13) Y. Xie, H. Dong and J. Dantzig: ISIJ Int., 54 (2014), 430.
- 14) W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo and Y. Wang: Comp. Mater. Sci., 82 (2014), 525.
- S. Fukumoto and I. Hiroshige, Quarterly J. Japan Welding Society, 29 (2011), 197.
- W. Kurz and D. J. Fisher: Fundamentals of solidification, (1989), 293, Trans Tech Publication.
- H. Nakagawa, F. Matsuda: Quarterly J. Japan Welding Society, 47 (1978), 474
- 18) W. Kurz, B. Giovanola and R. Trivedi: Acta Metall., 34 (1986), 823.
- D. Wang, K. Kadoi, K. Shinozaki, M. Yamamoto: ISIJ-International, 56 (2016), 2022