短パルスレーザを用いた高効率深紫外 LED 実現の為の p-AlGaN の ドーパント高活性化,並びに低抵抗電極の形成法の開発

豊田工業大学工学(系)研究科(研究院)
教授 神谷 格
(平成 26 年度一般研究開発助成 AF-2014205)

キーワード:エキシマーレーザー,窒化物半導体,キャリア活性化

1. 研究の目的と背景

GaNやAlGaNで代表される窒化物半導体において,発光 素子に代表される電子デバイスを実現するために通常結 晶成長法として有機金属結晶成長法(Metal Organic Chemical Vapor Deposition: MOCVD)を用いる.しかし MOCVDでは窒化物半導体の p型ドーパントとしてMg を用 いるが,通常,Mg をいくらドーピングしてもそのままで はなかなか活性化されずアクセプターとして働かない.こ の問題は結晶成長の後,急速加熱(Rapid Thermal Annealing: RTA)法や,熱処理炉での定常加熱法を用いて 結晶をアニールし,水素を結晶から追い出すことによって 活性化できることが中村らによって見いだされた¹⁾.この 結果,容易にp型窒化物半導体が得られるようになり,現 在は発光ダイオード(Light Emitting Diode: LED)など の発光素子をはじめとする種々のデバイスが生まれてい る.

しかし今まで行われている RTA 法や定常加熱法では大 面積結晶成長基板の加熱は可能だが局所加熱は不可能で あり, LED 以外の縦型電流狭窄型 FET (Field Effect Transistor: 電界効果型トランジスター)を実現するうえ で,必ずしも最適な活性化法ではない.そのような中,我々 はエキシマーレーザーを用いた新たな「レーザー誘起局所 p型活性化 (Laser Induced Local Activation: LILA) 法」 を開発した.本方法は特別な炉を用意する必要がなく大気 中,あるいは任意の雰囲気環境の中で容易に局所活性化を 行うことができるばかりでなく,エキシマーレーザーが短 いパルス (~10ns) で発振するために温度の上昇並びに下 降を急峻にでき,そのためドーパントの拡散を抑え横方向 並びに深さ方向に対してもシャープな切れの良い不純物 ドーパント分布が期待できる,といった特長を有している. また Mg は熱処理によって動きやすく界面等に蓄積すると 考えられているが,温度の急峻な上下の結果そのような蓄 積効果もなくすことができると期待される.またこの LILA 法は任意の位置を活性化することができるためコン ピュータ制御によるデバイス作製を可能にする.これは Si-LSI (Si 大規模集積回路)の実現が局所不純物注入を 可能にしたイオン注入法と良く類似している.すなわち, LILA 法によっても局所不純物活性化が可能になるため縦 型電流狭窄型 FET 等,種々の応用が期待される.また LILA 法は非定常状態でのプロセスであるため,非定常結晶成長 法である,交互供給結晶成長法を用いた場合のドーピング が高い活性化率を示している²⁾のと同様にドーピングし たMgの活性化率が非定常法である LILA 法で上がる可能性 もあり,新たな活性化法として期待される.

深紫外 LED の高効率化を考えた場合,この LILA 法を用 い,高濃度・高移動度 p型 AlGaN の実現,低抵抗オーミッ クコンタクトの実現などが期待される.これらを実現する ために本研究では,我々の開発した LILA 法を GaN に適用 し,Mg ドープ GaN 窒化物半導体の p型活性化の可能性を 原理実証することを目的とした.

2. 実験方法

実験に用いた試料構造の概念図を図1に示す. 試料はサ ファイア基板あるいは Si 基板を用い,その上に低温 GaN バッファー,アンドープ GaN, Mg ドープ GaN を MOCVD 法 を用いてエピタキシャル成長し作製した. Mg ドープ GaN の厚みは約1µm である.図1に示したものはサファイア 基板上に作製した試料構造の一例である.

図1 Mg ドープ GaN の試料構造

図2に試料への光照射及びその場観察実験の装置の構成図を示す.照射用レーザーは193nmで発振するArFエキシマーレーザーを用いており,パルス幅は10ns,繰り返しは1~500Hz,レーザー強度は最大10mJである.レンズ系を用い適度な大きさに集光する.X-Y方向に自由に動くステージ上に試料は設置されており,目的に応じて均一照射,あるいは局所照射を行うことが可能である.

図2 試料照射系並びにその場観測系

レーザー照射を施した試料は事後に van der Pauw のホ ール効果測定並びに電流電圧特性で評価した.また表面の 形状は顕微鏡で観察した.

3. 実験結果

レーザーの局所照射並びに大面積照射を行う場合,レー ザーのプロファイルとその重ね合わせによるレーザー強 度分布を知る必要がある.我々はスリット法を用いてレー ザー光の強度プロファイルを調べた.図3は横方向に関す る強度プロファイルの測定結果である.この結果から明ら かなとおりプロファイルはほぼガウシアンで近似でき,そ の半値全幅は1200 µm であった.縦方向に関しても同様の 実験を行った.

図3 横方向のレーザー強度プロファイル 赤線はガウシアン近似

図4 重ね照射による照射プロファイルの シミュレーション

(a) 重ね合わせ前のレーザー強度プロファイル,

- (b)重ね方が悪い場合の全体強度プロファイル.
- (c)重ね方が最適の場合の全体強度プロファイル

図4はエキシマーレーザーを少しずつずらして重ね打

ちし照射した場合の全体の照射プロファイルのシミュレ ーション結果を示す.前述の強度プロファイリングの結果 に基き,ビームの半値幅は 1200 µm とした.シミュレーシ ョン結果で確認される通り,ビームの重ね方が悪い場合は 照射強度に変動が出るが,重ね方を最適化することによっ て照射強度を均一にすることができる.

試料はホール効果を測定するために種々のレーザー強 度で 8mm 角の試料を均一照射した.また比較のために熱処 理炉での定常加熱法を用いて活性化した結果,並びに未処 理の試料での測定結果を比較した.表1はSi 基板上に結 晶成長した Mg ドープ GaN を LILA 法によって照射した場 合,定常加熱した場合,並びに熱・光の処理をしない場合 の3種の試料のホール効果測定によるキャリア濃度並び に移動度の測定結果例である.

Mg濃度 [cm ⁻³]	処理方法	ホール濃度 [cm ⁻³]	移動度 [cm²/V·s]
$5.2 imes 10^{19}$	LILA 1mJ,150Hz,1mm/s	3.3×10^{16}	4.7
	定常加熱 950℃,20min,N ₂	$5.5 imes 10^{16}$	4.1
	未処理	高抵抗のため, 測定不可	

表1 Mg を 5.2x10¹⁹/cm³ドープした場合の LILA 法 と熱処理炉での定常加熱処理,並びに未処理の試料 でのそれぞれのホール濃度,移動度の測定結果.³⁾

 $5.2 \times 10^{19} \text{ cm}^3$ という高い濃度でMg 原子によるドーピン グがなされていても、熱・光照射等の処理を施さない場合, Mg ドープ GaN 試料は絶縁性でホール効果の測定は不可能 であった.しかし定常加熱法若しくは LILA 法を用いるこ とで p 型のキャリアであるホールが形成され,ホール効果 の測定も可能となった.LILA 法の場合ホール濃度は $3.3x10^{16}/\text{cm}^3$ であった.移動度の結果も合わせ,LILA 法で 得られた結果はほぼ定常加熱法 (950°C, 20min, N₂雰囲気 中) で得られた結果と一致する.このことより定常加熱法 と同様にLILA法でMg ドープ GaN のキャリアが活性化でき ることが分かった.

また,照射を施した結晶の表面は鏡面であった.更に照 射エリア,照射位置はLILA法では任意に変えられ,今回 は 8mm 角での領域限定均一照射でホール効果測定に成功 している.

サファイア基板上の Mg ドープ GaN に関しても照射条件 は基板の熱伝導等によって異なってくるが同様に LILA 法 で活性化できることが解った.

4.結論

LILA 法により Mg ドープ GaN を p 型に局所活性化するこ とができることが実証された.また,本研究により Mg ド ープ AlGaN の LILA 法による高活性化,それを用いた高効 率深紫外 LED 作製が可能になる第一歩の原理実証研究が できた.本方法は将来,縦型電流狭窄型 FET を実現する有 効な手段となると期待される.

謝辞

本研究は公益財団法人天田財団の一般研究開発助成 (AF-2014205)によって行われたことを付記するとともに, 深く感謝の意を表する.また本研究は本学学生の松本滉大 君,下野貴史君,そして岩田直高教授,山田郁彦研究員, 黒瀬範子研究員(立命館大学),青柳克信上席研究員(立 命館大学)との共同研究によって行われた.

参考文献

S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn.
J. Appl. Phys. **31** (1992) L139.

 Yoshinobu Aoyagi, Misaichi Takeuchi, Sohachi Iwai, and Hideki Hirayama, AIP Advances 2 (2012) 012177.
松本滉大, 黒瀬範子, 下野貴史, 岩田直高, 山田郁彦, 神谷格, 青柳克信, 2017 年度秋季応用物理学会発表予定.