パルスレーザー照射による局所高温場を用いた高融点材料粒子の

合成とホウ素中性子捕捉療法用新規薬剤粒子の開発

産業技術総合研究所 ナノ材料研究部門 主任研究員 石川 善恵

(平成 26 年度一般研究開発助成 AF-2014204)

キーワード:レーザープロセス、液中レーザー溶融法、サブミクロン球状粒子

1. 研究の目的と背景

1・1 ホウ素中性子捕捉療法用ホウ素薬剤について

天然ホウ素の2割を占める¹⁰Bは高い中性子吸収断面積を 有し、中性子を吸収することによって電離効果の高いα粒子 を放出する。α粒子の飛程は5~10ミクロンと、一般的な細胞 の大きさよりも小さいことから、¹⁰Bを含む化合物を腫瘍細胞に 選択的に取り込ませることによって、中性子照射により腫瘍細 胞のみを選択的に破壊することが可能である¹⁰。これがホウ素 中性子捕捉療法(BNCT)の原理であり、これまで外科的治療 が困難な腫瘍への適応や低侵襲な治療として、臨床試験が 進められているところである。

BNCT を安全かつ効率良く実施するためには、腫瘍細胞に、 選択的かつ十分な量の¹⁰Bの蓄積が必須である。現在ではボ ロカプテイト(BSH; Na2B12H11SH)やパラボロノフェニールアラニ ン(BPA; C₉O₄NBH₁₂)などが用いられているが、それらの腫瘍 細胞に対する選択性や蓄積特性は未だ不十分である²⁾。この ため、実際にはこれらの薬剤を大量に投与するために2,3ガ ス中でのレーザーアブレーションによる薄膜作製や微粒子合 成は古くから知られているが、1990年台後半より、液中のター ゲットに対してのレーザーアブレーションに関する研究が開始 された。この液中レーザーアブレーション法では大がかりな真 空装置等が不要で、液中に固定したターゲット基板や液中に 分散したターゲット粒子にレーザー照射するだけで容易にクラ スターやナノ粒子の合成が可能であることから、現在も国内外 で広く研究がなされている。リットルにも及ぶ点滴がなされて おり、患者への肉体的な負担が避けられないことが問題となっ ている。そこでホウ素化合物のドラッグデリバリーシステム構築

に関する研究が数多くなされているが、腫瘍細胞選択性や ¹⁰B 蓄積量、安全性などの課題を完全に克服するには至って いない。そこで、有機ホウ素化合物からなる従来の BNCT 薬 剤に対し、大量の ¹⁰B を含むナノ〜サブミクロンサイズの 無機粒子が新たに注目されている。しかし単体のホウ素粒子 では表面の酸化によって毒性を有する H_3BO_3 の生成が避けら れないことから、化学的に安定な B_4C や BN が有力な候補と 考えられている。現在申請者らは B_4C に着目し、基礎的な *in vitro、in vivo* 試験を通して BNCT 薬剤としての可能性を検証 しているところである。

薬剤化研究を進めて行く上では、粒子の体内動態を明らか にする必要がある。特に化学的に安定な無機粒子の場合、投 与方法や投与部位によっては、一般的な薬剤分子とは大きく 異なる動態を示すと考えられている。そこで例えば、*in vivo* 試 験において生きた動物体内の粒子の分布をその場観察する ことが可能となれば、体内動態に関する情報を得ることが出来 る。そこで本研究では、MRI 造影効果を有する Fe を含有する B₄C 粒子の合成を試みた。

1・2 粒子合成手法について

レーザーを用いた材料合成プロセスとしてガス中でのレー ザーアブレーションによる薄膜作製や微粒子合成が古くから 知られているが、1990年台後半より、液中のターゲットに対し てのレーザーアブレーション(液中レーザーアブレーション法) に関する研究が開始された³⁾。この手法では液中に固定した ターゲット基板や液中に分散したターゲット粒子にレーザー照 射するだけで容易にクラスターやナノ粒子の合成が可能であ る。これに対し申請者らは、一般的なアブレーションでのレー ザーフルエンスより、1~2桁程度低いフルエンスのレーザー を分散液中の粒子に照射することで、原料粒子よりも大きなサ ブミクロン球状粒子が主生成物として得られる現象を見出した ⁴⁾。このプロセスでは、原料粒子がアブレーションするのではな く溶融液滴化し、直後に冷却を経ることで表面張力による球 形を維持した粒子が生成する。そこで我々はこの手法を「液 中レーザー溶融法」と称し、新しい球状粒子合成方法として研 究を進めてきた。

これまでにこの液中レーザー溶融法によって、有機溶媒 中に分散したホウ素粒子に適切なフルエンスのレーザー光 を照射することでホウ素を瞬間的に溶融液滴化し、生じた高 温のホウ素液滴と液滴周囲の分散媒分子との高温化学反応 により B₄C 球状粒子が得られることを確認している。このよう に本手法を用いれば、高融点材料であるホウ素を室温大気 圧下の液体中で瞬時に溶融することが可能である。さらに BNCT 用要素薬剤として不可欠な同位体濃縮された¹⁰B 化 合物のなかでも比較的容易に入手が可能な¹⁰B 粒子を原料 として容易に B₄C 粒子を合成することが可能である。そこで 本研究では B₄C 粒子を合成することが可能である。そこで 本研究では B₄C 粒子と鉄化合物粒子の混合分散液に対して本 手法を適用することでイメージング機能やハイパーサーミア などの応用が期待出来る、磁性を有したホウ素化合物粒子 の合成を目的とした。

2. 実験方法

B₄C 球状粒子は、B の濃度 100 ppmのエタノール分散液 5 ml に、約 300 mJ cm⁻² pulse⁻¹で 5 分間レーザー照射(Nd:YAG レーザー, パルス幅: 7 ns, パルス周波数: 30 Hz, 波長: 355 nm)後に改修した粒子を、未反応のホウ素を溶解除去するた めに硝酸水溶液で処理したものを洗浄して得た。

合成した炭化ホウ素粒子と、種々の酸化鉄粒子をそれぞれ 100 ppm となるように調製したエタノール分散液を照射用ガラ ス容器に5 ml採った。照射用ガラス容器は超音波浴中に固定 し、液面からレーザー光を様々なフルエンスで 5 分間照射し た。照射後の粒子は磁気分離により磁性を有する粒子のみを 回収した。X 線回折(XRD)を用いた回収粒子の結晶構造分 析や、走査電子顕微鏡(SEM)による形状観察を行った。さらに 振動試料型磁力計(VSM)を用いて回収粒子の磁気特性を評 価した。

3. 実験成果

3・1 酸化鉄粒子の選定

予め本手法で得た B4C 粒子(a)と複合化を試みた酸化鉄原 料粒子の SEM 写真を図 1(b), (c)に示す。 α -Fe₂O₃ は約 10 nm 程度のナノ粒子(b)であり、Fe₃O₄ は約 100 nm の粒子が不規則 に連なった形状の粒子(c)であった。

B₄C 粒子との混合分散液を150 mJ cm⁻² pulse⁻¹で照射して

図1 照射前の原料粒子 (a) 本手法で得た B₄C 粒子, (b) α-Fe₂O₃, (c) Fe₃O₄

図2 照射後、磁気回収して得られた粒子。 (a) B₄C とα-Fe₂O₃の混合分散液の照射後, (b) B₄C と Fe₃O₄の混合分散液の照射後。

得た粒子の磁気回収物を図2に示す。α-Fe₂O₃との混合分散 液の照射の場合(a)、針状または薄膜状の生成物が確認出来 たが、生成した球状粒子は比較的サイズの揃ったサブミクロン 球状粒子であった。これに対し Fe₃O₄ との混合分散液の照射 の場合(b)、サブミクロンサイズの粒子に加えて、大きな粒子の 融合によって生じたと考えられるミクロンサイズの粒子も確認 出来た。

これらの粒子の XRD 測定結果を図 3 に示す。B4C と

図3 照射後、磁気回収して得られた粒子の XRD。 (a) B₄C とα-Fe₂O₃の混合分散液の照射後, (b) B₄C と Fe₃O₄の混合分散液の照射後。

図 4 様々なレーザーフルエンスで照射して得られた 粒子。(a) 75, (b) 100, (c) 200 mJ cm⁻² pulse⁻¹

 α -Fe₂O₃の混合分散液の照射の場合、 γ -FeOOH に加えて FeB の生成が確認出来た。一方で、B₄C と Fe₃O₄の混合分散 液照射の場合、磁気回収物は Fe₃O₄ であり、B を含む化合物 は確認出来なかった。これは、 α -Fe₂O₃の場合はナノ粒子で あり、分散液中で B₄C 粒子と接触しやすいのに対し、Fe₃O₄ は 比較的大きな粒子の連続体であることから α -Fe₂O₃ と比べて B₄C と接触しにくかったためと考えられる。後のさらなる分析に よって、図 2 (a), (b)共に観察された球状粒子を覆っている針 状または薄膜状の生成物は γ -FeOOH であり、希酸で処理す ることによって溶解除去が可能であることが明らかとなった。こ れらの結果より、本研究では原料鉄酸化物として α -Fe₂O₃ を 用いることとした。

3・2 Fe-B 合金生成メカニズムの解明

 B_4C 粒子と α -Fe₂O₃ との混合分散液へ、種々のフルエンス でレーザー照射後、磁気回収した粒子の SEM 写真を図 4 に 示す。得られた粒子はいずれの条件においても球状の粒子 であった。また得られた粒子の XRD 測定を行ったところ、75 や 100 mJ cm⁻² pulse⁻¹で照射した場合の磁気回収物は γ -Fe₂O₃ と γ -FeOOHであり、Bを含む化合物は確認出来なかった。150, 200 mJ cm⁻² pulse⁻¹では γ -FeOOH に加えて FeB が確認され、 250, 300 mJ cm⁻² pulse⁻¹でさらに Fe₂B も生成することが明らか になった。

粒子の比熱や各状態におけるエンタルビー変化を用いると、 あるサイズの一つの粒子の状態変化に必要な熱量を求めるこ とが出来る。一方で、粒子がレーザー光から吸収するエネル ギーは、フルエンスと粒子サイズや波長依存性を考慮した粒 子の吸収効率から求めることが出来る。粒子が吸収したエネ ルギー全てが粒子の温度上昇に利用されると仮定すると、各 フルエンスにおける B₄C とα-Fe₂O₃粒子の状態を推測すること が出来る。

75 や 100 mJ cm⁻² pulse⁻¹では B₄C は固体のままであるが、 α -Fe₂O₃ は溶融が可能と推測される。従って、図 4(a)に示す粒 子は α -Fe₂O₃ の溶融により生じた球状粒子と考えられる。これ までの研究により、エタノール中で鉄酸化物を照射すると、 FeO や Fe などの低酸化状態の成分を含む球状粒子が得られ ることがわかっている ⁵⁾。これは、高温の鉄酸化物溶融液滴を 取り囲んでいるエタノール分子の熱分解により、還元性を有す る CO や H₂が発生するためと考えられる。 α -Fe₂O₃は反強磁 性材料であるが、本研究ではレーザー照射後に磁気回収さ れた粒子が得られ、その粒子は γ -Fe₂O₃と γ -FeOOH であった。 これはレーザー照射によって高温になった α -Fe₂O₃が溶融や 分解によって低酸化状態の Fe₃O₄を経て再度酸化することに より γ -Fe₂O₃が生成したと考えられる。さらに、 α -Fe₂O₃がレー ザー照射により熱分解した一部の成分が分散媒であるエタノ ール中で加水分解を受けて γ -FeOOH が生成したと考えられ る。

一方、150 mJ cm⁻² pulse⁻¹ 以上のフルエンスではα-Fe₂O₃ および B₄C の両方が溶融していると推測される。この様に、本 手法において FeB や Fe₂B のような Fe-B の合金粒子を得るた めには、それぞれの成分を含む原料粒子の両方が溶融して いる必要があることが明らかとなった。

150 mJ cm⁻² pulse⁻¹で得られた粒子の磁気測定を行ったところ、室温で強磁性を示した。本手法は同位体濃縮された¹⁰B₄C に対しても適応が可能であり、比較的入手が容易な¹⁰B 粒子を原料として様々な応用が期待出来る、磁性を有したホ ウ素薬剤の製造技術としての可能性を示していると考える。

4. 結論

B₄C とα-Fe₂O₃粒子の混合分散液へのレーザー照射によっ てFe-B 合金球状粒子を得ることが出来た。合金粒子を得るた めには、B₄C とα-Fe₂O₃の両方ともに溶融するフルエンスが必 要であることが明らかとなった。

謝辞

本研究は、公益財団法人天田財団平成 26 年度一般研究 開発助成(AF-2014204)からの研究費により行われた。

参考文献

 R. F. Barth, A. H. Soloway, and R. G. Fairchild, Cancer Res. 50, 1061 (1990)

M. W. Mortensen, P. G. Sørensen, O. Björkdahl, M. R. Jensen, H. J. G. Gundersen, and T. Bjørnholm, Appl. Radiat. Isot. 64, 315 (2006).

P. P. Patil. M. D. Phase, A. S. Kulkarni, V. S. Ghaisas, K.
S. Kulkarni, M. S. Kanetkar, B. S. Ogale, G. V. Bhide, Phys.
Rev. Lett. 58, 238 (1987).

Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki, Aool.
Phys. Lett. **91**, 161110 (2007).

5) 石川 善恵, 越崎 直人, Alexander Pyatenko, 電気学 会誌 論文誌 C, **135**, 9, 1066 (2015)