プレス加工における面内引張応力援用による

小径穴抜き加工に関する研究

栃木県産業技術センター県南技術支援センター主任 阿部 雅(平成 26 年度一般研究開発助成 AF-2014025)

キーワード:プレス加工,面内引張応力,小径穴抜き加工

1. 研究の目的と背景

プレス加工において,製品の小型化・軽量化のニーズに 対しては微細な形状の金型による精密加工技術が求めら れている.例えば最近の電子機器用筐体の場合,電子基板 用干渉防止カバーの取り付け穴の加工等において,被加工 材の板厚をパンチ直径で除した値(アスペクト比)が1を 超え,直径が0.5mm以下となるような小径穴抜き加工のニ ーズがある.しかし,小径穴抜き加工においては主に①板 厚に対して穴の直径が小さいことで,加工初期がせん断で はなく押込みとなり,パンチ側面と被加工材との間の摩擦 力が増加するため,せん断時やパンチ引き抜き時の抵抗も 増加し,パンチが座屈・摩耗しやすいこと,②摩擦力の増 加に加え,小径なパンチは剛性が低く,ダイとのクリアラ ンス・同軸度の狂い等も発生しやすいため,早期にパンチ が折損する可能性が高いことの2つが課題となり,十分な 対応技術が開発されていないのが実情である.

そこで本研究では,被加工材の穴加工位置周囲に穴を広 げるような応力(以下「面内引張応力」)を負荷させた状 態で穴抜き加工を行うことで,加工時の摩擦力を低減させ, パンチの長寿命化を図る.

2. 研究方法

2・1 面内引張応力負荷方法の考案

プレス加工機の上下運動を利用し,縦横 150mm 厚さ 0.8mm の被加工材に面内引張応力を負荷した状態で,中 央に直径 0.5mm の小径穴抜き加工を行う場合を想定し, 面内引張応力の負荷方法を考案した.

2・2 応力シミュレーション

面内引張応力が被加工材の弾性域内となる条件を SolidWorks2008によるシミュレーションで検討した.

2・3 面内引張応力負荷機構搭載金型の開発

シミュレーションで得られた条件で,実際の被加工材に 面内引張応力を負荷することが可能か,面内引張応力負荷 機構部分の試作金型(以下「模擬体」)を作製し,面内引 張応力が負荷された時の穴加工位置の応力状態を測定す ることで確認した.その後,面内引張応力負荷機構を搭載 した金型(以下「開発金型」)を作製した.

2・4 開発金型による小径穴抜き加工

プレス加工機に開発金型を取り付け, 亜鉛めっき鋼板に 対し, 小径穴抜き加工を行った.

3. 研究結果

3・1 面内引張応力援用による小径穴抜き加工方法

小径穴抜き加工は,以下に示す金型動作により行うこと とした.

①図1に示すように上側押さえを下降させ、上側押さえ とクッションプレートで被加工材を挟み、被加工材を平ら な状態で把持する.

②さらに上側押さえを下降させると,図2に示すように クッションプレートが沈み込んだ分,穴加工位置が凸状に たわみ,被加工材は表側も裏側も伸ばされて引張応力が負 荷された状態になる.

③この状態で穴抜き加工を行い,パンチ引き抜き後に上 側押さえを上昇させて被加工材を解放した際,被加工材は 元の平らな状態に戻る.

図2 たわみの付与

3・2 応力シミュレーション

3・2・1 シミュレーションモデル

図3に示す上側押さえと,それと同寸のクッションプレ ートで被加工材の全周を把持し,中央に穴抜き加工を行う 場合を想定した.そこで,表1に示す物性値(炭素鋼相当) の板状モデルの全周を固定端として,モデル中央が凹状に たわむよう,ダイの直径の範囲に荷重を掛けた場合の応力 分布と変位をシミュレートした.シミュレートしたダイの 直径と荷重の大きさの組み合わせを表2に示す.

図3 上側押さえ(網掛:把持部)

表1 モデルの物性	主値
-----------	----

ヤング率	ポアソン比	質量密度	降伏応力
210GPa	0.28	7,800 kg/m³	220.59MPa

表2 ダイの直径と荷重の大きさ

	ダイの直径 mm	荷重 N
条件1	5.00	100
条件2	5.00	80
条件3	10.00	100

3・2・2 応力シミュレーション結果

図4は条件1でシミュレートした結果の応力分布を可 視化した図であり,モデル中央において最も応力と変位が 大きくなることが確認された.条件2,条件3でシミュレ ートした場合も条件1同様,モデル中央において最も応力 と変位が大きくなった.表3にその値を示す.いずれの条 件においても最大応力が降伏応力を超えている.被加工材 にかかる最大応力を降伏応力未満の弾性域内にするため には,直径 5mm のダイの場合変位は約 0.40mm,直径 10mm のダイの場合変位は約 0.50mm が上限であると推 測される.

図4 条件1の応力分布

表3 シミュレーション中の最大応力と最大変位

	最大応力 MPa	最大変位 mm
条件1	280	0.563
条件2	224	0.451
条件3	222	0.557

3・2・3 シミュレーション精度の検証

シミュレーション精度の確認のため,表1と同等の板材 を,図3と同寸の鉄枠2枚で把持し,万能材料試験機(㈱ 島津製作所AG-M1)のロードセル先端に取り付けた直径 5mmの円柱圧子で,試験力100Nの負荷を中央にかけ, シミュレーション条件1に相当する圧縮試験を行った.そ の際の被加工材のたわみ量をダイヤルゲージによって測 定し,シミュレーションによって算出された変位と比較し た. 圧縮試験の概略図を図5に示す.

検証実験の結果,試験力 100N 時のたわみ量は約 0.56mmであった.表3条件1の最大変位とほぼ一致した ことから,シミュレーション精度は良好であり,本シミュ レーション結果の信頼性は高いと考えられる.

3・3 模擬体での応力状態の確認

3・3・1 模擬体

パンチが被加工材に接触する直前の穴加工位置付近の 応力状態を再現するために,模擬体は被加工材を把持し, 面内引張応力を被加工材に負荷するまでの機構を有した 形状で,前述のシミュレーション条件3の結果から,ダイ の直径は10mmとした.図6に作製した模擬体の概略図 を示す.被加工材がダイに接触するまでに,ばねの反力に よって被加工材が把持された状態となるよう,初期配置で は被加工材がダイから浮いた状態となる構造とした.また, クッションプレートガイドに,クッションプレートの下死 点位置を律する段差を設けた.

3・3・2 模擬体での実験に用いた試料

表4に示す物性を有する縦横150mm 板厚 0.8mm の冷 間圧延鋼板 SPCC を用いた.

表 4	榿 擬	体実験試料
4X T		

ヤング率	ポアソン比	引張強さ	耐力
200GPa	0.3	303MPa	169MPa

3・3・3 面内引張応力の試料への負荷方法

面内引張応力の負荷方法は,前述のシミュレーション条件3と同様とし,万能材料試験機(㈱島津製作所AG-M1) を用いて上側押さえを押し下げ,試料中央を0.5mmまでたわませた.

3・3・4 ロゼット解析による主応力の算出

ひずみゲージは、試料中央の主応力を求めるため、図7 に示す直角3軸型ロゼットゲージ(㈱昭和測器 N32-FA-1-120-11-VS3)を用いた.貼付位置及び方向を 図8に示す.データ収集には、動ひずみ計測システム(㈱ キーエンス NR-500 及び NR-ST04)を用いた.図8のa でのひずみを ε_a 、b・cも同様に ε_b ・ ε_c とした時、試料中 央における最大主応力 σ_{max} 及び最小主応力 σ_{min} は、ロゼ ット解析により以下の式(1)(2)で求められる.式中のEは ヤング率、 ν はポアソン比である.

図7 直角3軸型ロゼットゲージ概略図

図8 ひずみゲージ貼付位置及び方向

$$\sigma_{max} = \frac{E}{2(1-\nu^2)} \Big[(1+\nu)(\varepsilon_a + \varepsilon_c) + (1-\nu)\sqrt{2\{(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2\}} \Big]$$
$$\cdots (1)$$
$$\sigma_{min} = \frac{E}{2(1-\nu^2)} \Big[(1+\nu)(\varepsilon_a + \varepsilon_c) + \varepsilon_c) \Big]$$

$$-(1-\nu)\sqrt{2\{(\varepsilon_a-\varepsilon_b)^2+(\varepsilon_b-\varepsilon_c)^2\}}\Big]$$
...(2)

3・3・5 たわみ付与時の応力状態

試料がダイに接触したところをたわみ量 0mm とし,た わみ量が 0.5mm に達するまでのひずみの変化を図 9 に示 す.ひずみの増加は,たわみ量に対して直線的に比例して いる.つまり被加工材のひずみの最大値は,クッションプ レートの下死点位置によって調整可能である.

また,たわみ量 0.5mm 時のひずみは ε_a =651uST, ε_b =632uST, ε_c =490uST であった.ロゼット解析を行っ たところ,最大主応力 σ_{max} は179MPa,最小主応力 σ_{min} は147MPaとなった.最大・最小いずれの値も正の値で あることから,被加工材の穴加工位置付近は,いずれの方 向も引張応力が負荷された状態となることが予想される. たわみ量 0.5mm 時の最大主応力をシミュレーションで求 めた結果は189MPa であった.概ねシミュレーション通 りであるが,実際の最大主応力の方が若干低くなった原因 は,シミュレーションではモデルの四方が完全に固定され た状態であるが,実際にはがたつきや滑り等が発生するた めであると考えられる.

図9 たわみ量とひずみの変化

3・3・6 応力除荷後の残留変形

応力負荷前後の試料の残留変形測定には,表面粗さ測定機(㈱ミツトヨ SV-C624)を用いた.ダイ接触側に対し, 評価長さ 50mm でゲージ a と同方向へ,中央がひずみ測 定点となるよう測定した.

直径 10mm のダイに対し,たわみを 0.5mm 付与した時 の最大主応力は,試料の耐力を約 6%超えており,残留変 形を測定すると,応力負荷前は約 3um,応力除荷後は約 5um たわんでいた.しかし,測定時の誤差及び実際の穴 抜き加工では加工の影響によるバリ等の歪み・たわみの発 生が予想されるため,当該残留変形の穴抜き加工に対する 影響はほぼ無いと考えられる.したがって,シミュレーシ ョンによって得られた応力負荷方法及び条件(ダイ直径 10mm,たわみ量 0.5mm)は概ね妥当であると判断した.

3・4 開発金型による小径穴抜き加工

3・4・1 開発金型の作製

シミュレーション及び模擬体での実験結果を基に開発 金型を作製した.開発金型の概略図を図10,完成した金 型の写真を図11に示す.

ストリッパ 図10 開発金型概略図

図11 開発金型写真(上:上型,下:下型)

3・4・2 工具及び被加工材

パンチはショルダー2段パンチ(㈱ミスミ PHTWA3 -50-P0.5-B4.0-V2.0-F18),ダイはボタンダイ(㈱ミスミ MHD5-30-P0.6)を用いた.ダイには被加工材に接触する 部分が直径 10mm となるよう,スリーブを取り付けた. 被加工材は表5に示す物性を有する縦横 150mm 板厚 0.8mmの亜鉛めっき鋼板 SECC を用いた.

表5 被加工材

試料名	引張強さ	耐力	ヤング率
被加工材1	353MPa	222MPa	214GPa
被加工材 2	336MPa	202MPa	189GPa

3・4・3 加工時の荷重測定

万能材料試験機(㈱島津製作所AG-M1)により開発金型で小径穴抜き加工を行い,加工時の試験カストローク線図から,金型にかかる荷重及び挙動を確認した.また,下型のクッションプレートガイドの下に厚さ0.5mmのシムプレートを挿入し,同様の実験を行うことで面内引張応力 無負荷時の荷重の変化も観察した.

3・4・4 荷重測定結果

図12は開発金型のばね反力のみを考慮した場合の試 験力ストロークの予想線図で、図13は実際に開発金型で 被加工材1に穴抜き加工を行った際の試験力ストローク 線図である.図14はシムプレートを挿入し、面内引張応 力無負荷で穴抜き加工を行った際の試験力ストローク線 図である.

概ね設計通りの挙動が得られていることが確認できた. ストローク 0mm 及び 1.7mm 付近の挙動が設計とわずか にずれているが, 金型のがたつきやガイドとの摩擦による ものと考えられ, 修正は困難である.

図13及び図14のブレークスルー音直前のピークが せん断荷重¹⁾と考えられ,ブレークスルー時の荷重低下は, 図13で約79N,図14で約173Nとなった.これは面 内引張応力の負荷によりパンチと被加工材の摩擦が低減 されたことによるものと推測される.このことから,パン チにかかる荷重の50%以上の低減が期待できる.

3・4・5 連続100回の小径穴抜き加工

プレス加工機(コマツ製 60 トン OBS クランクプレス 機)を用いて被加工材2に対し,加工速度約 20spm(パ ンチが被加工材に接触する瞬間の推定速度は約 30mm/sec)で連続100回の加工を実施した.図15は1 回目の加工穴と100回目の加工穴をパンチ側の真上から, 図16は加工穴をダイ側から30°傾斜させて電子顕微鏡 (日本電子㈱JSM-5600LV/JED2201)で観察した写真で ある.図17は新品のパンチと100回加工後のパンチを 30°傾斜させて電子顕微鏡観察した写真である.

図15では、100回目も1回目とほぼ変わらない直径 0.5mmの穴が観察され、図16では、ゼロクリアランス になる箇所があるものの、1回目と100回目で加工穴の状 態はほぼ変わらなかった、図17では、新品のパンチに比 べると亜鉛成分の付着及び円周の一部に摩耗によるエッ ジの不明瞭箇所が現れている.

このことから,被加工材の穴加工位置において,引張応 力の不均一な箇所が発生していることが考えられ,パンチ が被加工材をせん断していく際に起こる引張応力の開放 に伴い,パンチの軌道がずれてゼロクリアランスになる箇 所が現れるものと推測される.

図15 加工穴パンチ側(左:1回目,右:100回目)

図16 加工穴ダイ側(左:1回目,右:100回目)

図17 パンチ先端観察(左:新品,右:100回加工後)

3・4・6 連続 350 回の小径穴抜き加工

被加工材1・2合わせて 350 枚用意し,連続 100 回加 工時と同じ条件で連続プレス加工を試みた.

途中で工具交換することなく,350枚全て小径穴抜き加 工を行うことに成功した.図18は加工穴をパンチ側の真 上から,図19は加工穴をダイ側から30°傾斜させて電 子顕微鏡で観察した写真である.図20は350回加工後 のパンチを30°傾斜させて電子顕微鏡観察した写真であ る.

図18 加工穴パンチ側(350回目)

図19 加工穴ダイ側(350回目)

図20 パンチ先端観察(350回加工後)

図18及び図19のせん断面のゼロクリアランス部分 に擦過痕が見受けられ,図20では100回加工したもの より円周の一部の摩耗が大きくなっている.

本研究における面内引張応力は,被加工材をたわませる ことにより負荷しているが,ゼロクリアランス部分を無く すよう,穴加工位置にさらに精密かつ均一に面内引張応力 を負荷することができれば,工具のさらなる長寿命化が期 待できる.

4. 結論

面内引張応力負荷機構を組み込んだ金型による小径穴 抜き加工時の試験力ストローク線図から,せん断荷重の低 下が確認され,面内引張応力負荷の小径穴抜き加工に対す る有効性が確認された.

また,同金型により 350 回の連続小径穴抜き加工に成 功した.

謝 辞

本研究を遂行するにあたり,多大なる御助言御協力をい ただいた㈱川崎製作所 家富貴志氏並びに湯沢伍一氏,(常精工 坂本重幸氏に深く感謝します.また,本研究は(公 財)天田財団の支援を受けて実施いたしました.ここに記 して謝意を表します.

参考文献

 古閑伸裕,青木勇:"プレス打抜き加工",(2002),日 刊工業新聞社