プレス加工中の金型内部の材料挙動の可視化

神奈川工科大学 自動車システム開発工学科 助教 小宮 聖司 (平成26年度一般研究開発助成 AF-2014021)

キーワード: 薄板金属成型, 接触条件, 超音波, FDTD, 可視化

1. 緒言

近年,導入が進んでいるサーボプレスは,サーボモータ を用いてスライドを昇降させる構造を有しており,スライ ドモーションを制御することによって精度の高い加工を 行うことが可能である.しかしながら,加工中にプレスベ ッド,スライド中央部がたわみ,金型とわずかな隙間が生 じる場合がある.このわずかな隙間をセンサにより検出し, サーボ機構にフィードバックさせて金型のモーションや スライド下死点を制御すればネットシェイプ加工が可能 となるだけでなく,機械を停止せずに調整が行え,全自動 プレス加工システムの実現が期待される.

一方, FEM 解析技術の向上に伴い, 被加工材や金型の 変形をシミュレートし, 製品の破断などの不良対策を金型 の設計段階で反映させる技術が発展してきている. しかし ながら, FEM 解析の予測どおりに加工対象物が変形をし ているのかを加工中に確認できる手法はない.

インプロセスで計測が可能なのは荷重やスライド位置 などであり、実際の被加工材の変形をとらえているとは言 いがたい.実測との対応をつけられなければ、今後のFEM 解析自体の精度向上も望むことができない.

このような観点から金型と製品の接触状態をインプロ セスで調べることは重要な課題である.しかし,現状では 接触状態をインプロセスで精度良く計測する方法は見当 たらない.仮に接触式または光学式センサを用いる場合, 金型にセンサを設置するための穴を追加工しなければな らず,金型の精度・剛性の低下を招く恐れがある.

そのようなことから、金型に加工をせず計測を行うため に,超音波を用いてプレス加工における被加工材と金型の 接触状態をインプロセスで計測するシステムの開発を行 っている 6)~12). 金属接触面圧を, 超音波を用いて計測し た研究^{1),2)},軸受の接触状態をインプロセスで計測した研 究^{3),4)}などが行われ,鍛造加工において超音波の反射を用 いて接触の状態を調べた例も報告されている⁵⁾.いずれも, 単純な形状の接触状態の計測例であり、またリアルタイム に計測した例は少ない.板材のプレス加工や鍛造では金型 と被加工材の境界面が2つ存在し,そこに生じた隙間をリ アルタイムで検出する必要がある.また,インプロセスで 被加工材の変形をモニタするためには, 被加工材の弾塑性 FEM によって得られる隙間形状と超音波の反射透過特性 の関係を詳しく調べ, 密着状態の超音波の反射・透過特性 を予測する必要がある. そこでシステムの開発には前述の 問題点を考慮し、以下のことを行った.

1) 超音波を用いたインプロセス計測システムの構築^{6),8)}

- 2) 超音波の反射・透過特性に対する被加工材の影響^{7)~9)}
- 3)数値シミュレーションを用いた金型・被加工材内における超音波伝播の可視化技術の開発^{10)~14)}

本研究では、上記の研究項目に関して述べ、プレス加工におけるインプロセスモニタリングの可能性を検討した.

2. 計測原理

図1に示すように超音波探触子より媒質1に入射された超音波は、材質の異なる媒質1および媒質2の境界面で 透過波と反射波に分離する.

図1 異なる媒質の境界面における超音波の反射と透過の

この境界面における超音波の反射率は音圧反射率と呼ばれ,縦波平面波がその波面に平行な面に入射する場合,式(1)で表される¹⁾.

$$|R| = \left| \frac{Z_1 - Z_2}{Z_1 + Z_2} \right|$$
(1)

ここで, Z₁および Z₂は媒質1および2の音響インピー ダンスであり式(2)で与えられる.

$$Z = \rho c_l$$

(2)

ρは媒質の密度, c1は媒質内の縦波音速である.

表1に各材質の音響インピーダンスと, 媒質1を金型と したときの反射率を示す. 金属と空気の接触面においては, 表1に示す様に音圧反射率はほぼ1となる. そのため金型 と被加工材の間に隙間が生じている場合, その隙間の空気 と金型の境界面では超音波がほぼ全反射し反射波が増加 する.一方,透過波は減少する.

図2には薄板V曲げ加工を例に、超音波を用いて接触 状態を調べる手法の概要を示す.金型と被加工材が密着し、 隙間がなくなると、超音波の反射量が減少し透過量が増加 する.この反射波および透過波を計測することにより、接 触状態の変化を調べることができる.

表1 音響インピーダンスと音圧反射率 の

	Acoustic impedance $Z [\times 10^6 \text{ kg/(m^2s)}]$	Sound pressure reflectance (material 1 is steel) <i>R</i>
Steel	46.4	0.0
Air	0.0004	1.0
Stainless steel	45.7	0.008
Copper	42.2	0.047
Aluminium	17.5	0.452

図 2 薄板 V 曲げ加工における接触状態のインプロセスモ ニタリング

3. インプロセス計測

3.1 インプロセス計測システム

金型-被加工材の境界面における超音波の反射・透過特 性を調べるための実験装置を図3に示す^{6,8)}.ただしV字 型金型を使用した場合である.反射および透過波を同時に 計測するために,2台の超音波探傷器(UI-25:菱電湘南エ レクトロニクス)を使用した.超音波センサ(超音波探触 子)は直径10mmの振動子を有し,上金型の上部および下 金型の下部に設置されている.超音波は、マスター側の探 傷器に接続された探触子1から入射される.反射波および 透過波は、それぞれ探触子1および探触子2で受信され、 それぞれの探傷器を介してコンピュータに保存される.こ れらの探傷器は、同期ケーブルで接続されており、探傷器 間での時間遅れが生じないようにした.汎用加圧器にて鉛 直下向きの荷重を加えた.実験では探触子・金型・被加工 材の各境界面にグリセリンを塗布した.

図3金型と製品の接触状態のインプロセス計測装置 6),8)

モデル金型の間に薄板の被加工材をはさみ,汎用加圧器 を用いて鉛直下向きに荷重を加えた.接触面圧 P は式(3) を用いて求めた.

$$P = F / A \tag{3}$$

F は上プレートに設置した荷重計で計測された荷重で あり, A は金型と被加工材の接触面積である. 超音波の周 波数は 5MHz とした.

平行金型を用いた場合の反射波を計測した結果を図 4 に示す⁸. 図中に示すように反射波強度の計測結果にピー クが現れる. このピークの高さを反射波高 er とした. ま た,超音波の透過波も同様なピークが現れるため,そのピ ーク高さを透過波高 er とした. 構築した計測システムで はこれら反射・透過波高を時系列で計測することができる. 溝のない平行金型に厚さ h = 0.2mm のステンレス板 (SUS304)を挟み実験を行った.そのときの反射および 透過波高比を図 5 に示す. ER は反射波高比, ET は透過波 高比であり,式(4),式(5)で定義される.

$$E_R = e_R / e_{R,0}$$
(4)

$$E_T = e_T / e_{T,0}$$
(5)

er はプレス加工中に計測された反射波高, er.0 は無荷 重の場合における反射波高, er はプレス加工中に計測さ れた透過波高, er.0 は被加工材を挟まず,上下の金型を密 着させた状態の透過波高比である.

接触面圧が増加すると、反射波高比は減少し、透過波高 比は増加した.これは、接触面圧の増加とともに金型と被 加工材の接触面積が増加し、境界面で超音波が透過しやす くなったためと考えられる.また、ある面圧以上になると 反射・透過波高比がほぼ一定となる傾向が見られた.反射・ 透過波高比の値がほとんど変化しないことは接触状態が 変化しない、すなわち金型と被加工材が密着状態になった と考えられる.この一定となる圧力を密着圧力とした.

図 5 平行金型を用いた場合の接触面圧と反射・透過波高 比の関係⁸⁾

3.2 反射・透過特性に対する被加工材材質の影響

被加工材の板厚を h = 0.5mm とし, 材質をステンレス (SUS304), 銅 (C1100), アルミ (A5052) として実験を 行った.実験には図3に示す装置を用い,溝なしの平行金 型を使用した.図6には反射波高比および透過波高比と被 加工材の音響インピーダンスの関係を示す⁸⁾. ただし,波 高比は接触面圧が密着圧力より大きい場合の平均値を用 いた.被加工材の音響インピーダンスが大きくなると,反 射波高比は減少し,透過波高比は増加することが分かった. これは,被加工材の音響インピーダンスが小さくなると式 (1)の音圧反射率が増加する,すなわち金型と被加工材の 境界での超音波の反射が増加するためである.

図 6 反射・透過波高比に対する被加工材の音響インピー ダンスの影響(平行金型)⁸⁾

3.3 反射・透過特性に対する被加工材厚さの影響

平行金型を用いた場合の反射波高比および透過波高比 と被加工材板厚の関係を調べた^{7).8)}. その結果を図7に示 す. 図中の波高比は密着圧力より大きい場合の平均値を用 いた. 板厚の違いにより,反射・透過波高比が変化した. 金型と被加工材の境界面は2つ存在する. 超音波が入射さ れると,それぞれの面で超音波の反射が生じる.それらの 合成波が反射波として検出されると考えられる.板厚が異 なると,被加工材内部で超音波が伝播する距離が変化する. そのため,合成波の振幅が変化することが考えられる.

図 7 反射・透過波高比に対する被加工材厚さの影響(平 行金型)⁸⁾

3.4 傾斜面の影響

図3に示すV字型金型による曲げ加工を模した実験装置を用い,被加工材が斜めに配置されている場合について調べた.2台の超音波探傷器を用い,被加工材は斜面に2枚設置した.金型と被加工材の接触面積は1枚あたり800mm²である.探触子1は送信機,探触子2,3はそれぞれ反射・透過波の受信機である.金型のV角度は90°とした.実験は、同一条件で5回行った.

図 8 反射・透過波高比に対する被加工材の音響インピー ダンスの影響(V字型金型)⁹⁾

図8には、被加工材の音響インピーダンスと反射・透 過波高比の関係を示す?の.図中のプロットは、平行金型 の場合と同じように、接触面圧が密着圧力以上の平均値 とした.音響インピーダンスが増加すると、反射波高比 は減少し透過波高比は増加する.このような傾向は平行 金型を用いた実験でも見られる.よって、傾斜面での反 射・透過特性は被加工材の音響インピーダンスに影響される.

 図 9 反射・透過波高比に対する被加工材厚さの影響(V字 型金型)⁹⁾

図9 には、被加工材厚さと波高比の関係を示す⁹. 図中 のプロットは、接触面圧が密着圧力以上の平均値とした. 被加工材が薄くなると、反射・透過波高比は減少する傾向 が見られた.一方、平行金型では、反射波高比が減少する と、透過波高比は増加した.傾斜していることにより、被 加工材内での超音波の経路が平行金型の場合に比べ長く なり、その影響が現れていると考えられる.よって傾斜面 でも超音波を用いて接触状態を調べることは可能である. 平行金型と同様に反射・透過波高比は被加工材の材質・形 状に影響されることが分かった.

FDTD 法による超音波伝播解析

前節までに述べたように,超音波で金型と被加工材の接触状態を計測可能であり,被加工材の材質や形状により超音波の反射・透過量が異なることが分かった.実際の製品はより複雑な形状をしており,形状によっては金型と製品の接触面に超音波が斜め入射し,横波から縦波,縦波から横波にモード変化することがある^{15),16)}.そのため,金型および被加工材付近での音場は非常に複雑となり,反射・透過波高を実験結果のみから予測するのは困難である.また金型と被加工材の密着状態における超音波の反射・透過特性を予測するシステムの開発にはFEM解析を用いて被加工材の変形をシミュレートした結果をもとに音場を予測し,それを実験結果と比較する必要がある.

そこで、本研究では FDTD 法による超音波伝播解析を行い、可視化と波高比の予測技術の開発を行った.

4.1 基礎式および計算方法

超音波探触子から入射した超音波は,塑性変形を伴わず, 弾性波として媒質内を伝播する.等方性を有する媒質にお いて,y方向の音場が一様とした場合の弾性波の基礎式を 式(6),および式(7)に示す^{16),17)}.式(6)はフックの法則,式(7) は粒子の運動方程式である.

$$\frac{\partial}{\partial t} \begin{bmatrix} T_{xx} \\ T_{zz} \\ T_{xz} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{13} & 0 \\ c_{13} & c_{33} & 0 \\ 0 & 0 & c_{55} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial \dot{w}}{\partial z} \\ \frac{\partial \dot{u}}{\partial z} + \frac{\partial \dot{w}}{\partial x} \end{bmatrix}$$
(6)
$$\rho \frac{\partial}{\partial t} \begin{bmatrix} \dot{u} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} \frac{\partial T_{xx}}{\partial x} + \frac{\partial T_{xz}}{\partial z} \\ \frac{\partial T_{zz}}{\partial z} + \frac{\partial T_{xz}}{\partial x} \end{bmatrix}$$
(7)

ここで、 T_{xx} , T_{zz} はx, z方向の垂直応力、 T_{xz} はせん断応 力 \dot{u}, \dot{w} は、それぞれx, z方向の粒子速度である。また c_{ij} はスティフネス行列の成分、 ρ は媒質密度である。

超音波の伝播解析には有限差分時間領域法(Finite-Difference Time Domain Method)を用いた^{10)~14),17)}. FDTD 法 は電磁場解析に用いられてきた.本計算法は,空間および 時間領域で弾性波の式を差分方程式に展開して逐次計算 を行い,弾性波の時間応答が計算できる¹⁷⁾.図10(a)には 解析に用いた計算格子を示す.応力と粒子速度は異なる格 子点に配置され,時間領域では蛙跳び差分を行う.

(a) 解析モデル
 (b)入射波形(ガウシアンパルス)
 図 11 解析モデル(V字型金型)と入射波形¹¹⁾

例として V 字型金型の結果を述べる.図 11 に示す計算 モデル¹¹)は V 字型金型を模した物で,被加工材は角度 45° に配置されている.音源は下部中央に設置し,長さを 10mm とした.音源には z 方向の粒子速度を与える方法を 用い,図 11 (b)に示すガウシアンパルスを入力した.振幅 は図 11 (b)に示すように,音源の両端で sin カーブを描く 分布とし,急激な振幅の変化がないようにした.入射波の 周波数は 5MHz とした.計算に用いた時間ステップは Δt =2ns,格子間隔は, $\Delta x = \Delta z = 20 \mu m$ とした.金型と被加工 材の境界は連続とし,材質のみが異なることとした.境界 条件はモデルの下部を自由境界とし,それ以外の面では不 要な弾性波の反射を防ぐため,吸収境界とした.吸収境界 条件は Mur の 1 次吸収境界とした¹⁸⁾.

4.2 計算結果

t=5.0 μs における静水圧応力比とせん断応力比を図 12 に示す¹¹⁾.静水圧応力比 *τ* およびせん断応力比 *σ* は式 (8), (9), (10)で定義される.

$$T = (T_{xx} + T_{zz})/2$$
 (8)

$$\tau = T / T_0 \tag{9}$$

$$\sigma = T_{xz} / T_0 \tag{10}$$

ここで、T₀ は入射波の静水圧応力の最大値である. 図 12(a)に示す様に、入射波は 45°の角度で被加工材に入射 する. 被加工材に到達した入射波は, 透過波と反射波に分 かれ,透過縦波は入射波と同じ方向に伝播する.一方,反 射縦波は被加工材に対して 45°の角度で反射する.入射波 が被加工材を通過すると、図 12 (b) に示すように金型と 被加工材の境界面において,反射及び透過横波が発生する. これは、縦波の一部が横波に変換されることを示している. 弾性固体内の横波の音速は縦波より遅い. そのため, 縦波 に比べ横波の波長は短い. 図中の横波①は、透過横波であ り、23°の屈折角で屈折する.横波②は、反射横波であり、 被加工材に対し23°で反射する.よって入射波の方向に設 置された受信機では横波を受信することはできない. 横波 を計測するためには、受信機の位置を変更する必要がある. こつの異なる媒質の境界へ斜め入射する超音波の反射お よび屈折角は、各媒質の音速に影響される¹²⁾. z=12mm 付 近にみられる波 (図中③) は, 音源の両端で生じた横波で ある.この波は縦波に比べ伝播速度が遅いため、t=5.0µs では被加工材に到達していない.

縦波超音波の反射・透過特性に対する被加工材材料の 影響を図 13 に示す¹¹⁾. 図中の*A*_{LR} と *A*_{LT} は反射縦波振 幅比および透過縦波振幅比であり,式(11),(12)で定義さ れる.

$$A_{LR} = \tau_R / \tau_0 \tag{11}$$

$$A_{LT} = \tau_T / \tau_0 \tag{12}$$

ここで、 τ_0 は入射波の振幅, τ_R および τ_T は反射・透過 縦波の振幅であり、いずれも静水圧応力比である.

図13より、反射振幅比ALRが減少すると透過振幅比ALT は増加する.これは超音波の反射量が減少すると,透過量 が増えることを意味する.音響インピーダンスが金型とほ ぼ等しい SUS304 の場合, 超音波はほとんど反射しないこ とが分かる.また、縦波の反射・透過振幅比は音響インピ ーダンスに大きく影響される. このような傾向は図 8 に示 した実験結果と定性的に一致する.一方,横波も材質の影 響があると考えられるが,音響インピーダンスは縦波に対 する値であり横波に適用するのは適切でない.横波に対し ても同様な値を検討する必要がある.受信機を図3のよう に設置した場合,計算結果より反射・透過の縦波は受信機 に入射し、計測可能であることが分かる。一方、横波に関 しては、解析結果から分かるように透過波・反射波ともに 受信機を外れる. 横波の伝播を調べるためには, 解析結果 より得られる計測可能な位置に受信機を設置して計測を 行う必要がある.

図 14 縦波超音波の反射・透過波振幅に対する被加工材厚 さの影響¹¹⁾

次に反射・透過特性に対する被加工材厚さの影響を図 14に示す.被加工材はアルミ(A5052)とした.反射・透 過波は被加工材の厚さに影響される.超音波は2つの境界 面で何回も反射透過を繰り返し,その度に反射波と透過波 に分かれる.被加工材を通過する超音波は,経路差(被加 工材厚さ)によって位相が変化する.これらの合成波が反 射・透過波として観測されるため,被加工材の厚さに波高 比が影響されると考えられる.

4.3 速度ポテンシャルを用いた超音波伝播解析

入射した縦波は進行方向に対して平行に変動し、その 変動によって垂直応力が発生する.一方、横波は進行方 向に対して垂直に変動し、せん断応力が生じる.そのた め前節で述べたように縦波・横波の伝播は、それぞれ垂 直応力、せん断応力を用いてある程度調べることは可能 である.しかし、振幅分布が一様でない場合、その進行 に伴ってせん断応力が発生する.また、異なる材質の境 界面に斜め入射によって縦波から横波へのモード変化が 生じ、縦波、横波を分離して識別する事は難しい.

一方,弾性波の基礎式に速度ベクトルより定義されるス カラおよびベクトル速度ポテンシャルを用いると,それら はそれぞれ独立に縦波と横波の波動方程式を満たすこと が知られている^{15),16)}.このスカラ・ベクトル速度ポテンシ ャルを金型内の超音波伝播解析に適用した^{11),13),14)}.

粒子速度ベクトル $\boldsymbol{u} = [\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$ をスカラ速度ポテンシャ ル*Φ*およびベクトル速度ポテンシャル $\boldsymbol{\mathcal{\Psi}} = [\boldsymbol{\mathcal{\Psi}}_1, \boldsymbol{\mathcal{\Psi}}_2, \boldsymbol{\mathcal{\Psi}}_3]$ を 用いて表すと、下式のようになる.

$\dot{\boldsymbol{u}} = \operatorname{grad}\boldsymbol{\Phi} + \operatorname{rot}\boldsymbol{\Psi} \tag{13}$

一方,式(13)より粒子速度*u*,*w*は速度ポテンシャルを用いると下記の様に表せる.ただし Ψ=Ψ2 として再定義した.

$$\frac{\partial \dot{u}}{\partial t} = \frac{\partial \dot{\Phi}}{\partial x} - \frac{\partial \dot{\Psi}}{\partial z}$$
(14)

$$\frac{\partial \dot{w}}{\partial t} = \frac{\partial \Phi}{\partial z} + \frac{\partial \Psi}{\partial x}$$
(15)

$$\vec{\mathbf{x}}(6),(7),(13) \sim (15) \, \boldsymbol{\xi} \, \boldsymbol{y} \,,$$

$$\rho \frac{\partial \dot{\boldsymbol{\phi}}}{\partial t} = c_{11} \left(\frac{\partial \dot{\boldsymbol{u}}}{\partial \boldsymbol{x}} + \frac{\partial \dot{\boldsymbol{w}}}{\partial z} \right) \tag{16}$$

$$\rho \frac{\partial \dot{\Psi}}{\partial t} = c_{55} \left(\frac{\partial \dot{u}}{\partial x} - \frac{\partial \dot{w}}{\partial z} \right)$$
(17)

ここで $\dot{\phi} = \partial \phi / \partial t$, $\dot{\Psi} = \partial \Psi / \partial t$ である. また $\rho \dot{\phi}$ および $\rho \dot{\Psi}$ は応力の単位を持つ. そこで $\rho \dot{\phi}$ をスカラ速度ポテンシャ ル応力, $\rho \Psi$ をベクトル速度ポテンシャル応力と定義した. 式(16),(17)はそれぞれ縦波および横波の伝播を表し, 伝播 解析には FDTD 法を用いた. 図 15(a)に解析に用いたモデ ルを示す. ここでは, 円弧金型として計算を行った. 円弧 金型の場合,その形状により被加工材に対する入射角が連 続的に変化するため, V 字型金型より音場が複雑になると 考えられる. 円弧金型の曲率半径を *R* とし, 計算領域は 20×30mm とした. 材質は A5052 とした. また金型材質は S50C とした. 被加工材と金型は境界面で連続とした. 図 中に示す A および B は透過および反射波の観測点である. FDTD 法の時間ステップは $\Delta t = 2ns$, 格子間隔は $\Delta x = \Delta z = 20nm$ とした.

計算結果を図 16 および図 17 に示す. 図中のスカラ速度 ポテンシャル比 *P*₁ および,ベクトル速度ポテンシャル比 *P*₅は下記の式で求めた.

$$P_l = (\rho \dot{\Phi}) / (\rho \dot{\Phi}_0)$$
(18)
$$P_s = (\rho \dot{\Psi}) / (\rho \dot{\Phi}_0)$$
(19)

ここで, $\rho \dot{\Phi}_0$ は t=1.4 μ s における最大値である. P_l は縦 波を, P_s は横波を表す.

図 16 被加工材と円弧金型の境界面付近におけるスカラ 速度ポテンシャル比分布(*R*=20mm, *t*=0.5mm).

図 16 はスカラ速度ポテンシャル比分布であり、縦波成 分を表す.計算モデル下部から入射した縦波の超音波の波 面は円弧状であることが分かる.これは音源が有限長さの ため、音源端において波が拡散しているためである.被加 工材を通過すると反射波と透過波に分離することがわか る(図 16(b)参照).透過波は、ほぼ入射波と同様な形状を しており、入射波に比べ振幅が小さい.図 16(c)より反射 縦波は曲面の作用により、一点へと集中していることが分 かる.被加工材が円弧状に配置されているため、入射波の 入射角度は、境界面において連続的に変化する.その影響 によって反射後に x=10mm の軸線上に音波が収束する. *R*=20mm の場合、収束点は z=8mm 付近であった.収束点 を過ぎると反射波は広がり、その振幅は小さくなった.

 図 17 被加工材と円弧金型の境界面付近におけるベクト ル速度ポテンシャル比分布(*R*=20mm, *t*=0.5mm).

一方,図 17(a)のベクトル速度ポテンシャル比分布(横 波成分を表す)より,音源の両端に横波が生じている.音 源の両端において,入射される粒子速度が一様でないため, その速度差によって発生した横波である.この横波の伝播 速度は縦波の約 50%である. t=4.5µs において,被加工 材付近に横波が発生する.これは,金型と被加工材の境界 が円弧状となっているため,その境界に対し縦波の超音波 が斜め入射し,縦波の一部が横波にモード変化するためで ある. t=6.0µs となると,反射波と音源両端に発生した横 波が重なり合い,複雑な音場を形成していたことが分かる.

以上より,速度ポテンシャルを用いた超音波の伝播式に FDTD 法を適用すると,縦波と横波を区別して調べること ができる.したがってより詳細に金型内の音場を調べるこ とが可能となる.今後は実験結果との比較検討を行い,よ り複雑な形状に対応する予定である.

5. 結言

プレス加工において金型と製品の接触状態を計測する 手法の開発について以下の知見を得た.

(1) 超音波を用いたインプロセス計測システムを構築し, 超音波の反射・透過波高比を用いて金型-製品間の接触状態の変化を計測可能であることが分かった.

(2) 透過波高比は被加工材の材質および厚さに影響されることが分かった.

(3) FDTD 法を用いた解析により,金型-被加工材の境界面 付近における超音波伝播の可視化が行え,計測結果の検証

に有効であることが分かった.

本手法によって得られた結果をサーボプレスにフィー ドバックして下死点を制御すれば、薄板曲げ加工に限らず 隙間の解消が期待される.また、インプロセスで計測する ことにより、加工中の変形の時間的変化を追跡することが 可能となる.特に型鍛造に生じる未充填部分の検出に有効 と考えられ、プレス加工中の材料流動の検証等に本手法の 適用の拡大が期待される.

今後は,弾塑性 FEM 解析を使用し,金型-製品間の隙間 予測をおこない,その結果を用いて密着状態の超音波の反 射・透過特性を予測するシステムの開発を行う予定である.

謝辞

本研究に対し、公益財団法人 天田財団より研究助成を 受けた.記して感謝の意を表します.

参考文献

- 益子正己・伊東誼:日本機械学会論文集,34-257 (1968),191-198.
- 2) 稲場千佳郎・朝永祐・伊東誼・斎藤義夫:日本機械学 会論文集 C 編, 66-645 (1999), 1674–1680.
- 竹内彰敏・木村好次・若林利明・石丸裕・森久和:日本機械学会論文集C編, 69-687 (2003), 3086–3091.
- 竹内彰敏・佐藤光正・小野沢元久・菅原康則・青木 弘:日本機械学会論文集 C 編, 65-640 (1999), 4767-4773.
- 5) 濟木弘行・坂田豊・中里忍・丸茂康男・詹志宏:日本 機械学会論文集 C 編, 59-562 (1993), 1934-1939.
- Hagino, N., Endou, J., Katoh, S., Okudera, S., Maruyama, M., Kubota, M. & Murata, C. : Steel research int. 81-9, (2010), 674–677.
- Hagino, N., Endou, J., Katoh, S., Okudera, S., Maruyama, M. & Kubota, M.: Steel research int. 2011 special edition, (2011), 390–395.
- 8) 萩野直人・遠藤順一・加藤俊二・石濱正男: 塑性と加工, 54-632 (2013), 826-830.
- 9) Hagino, N., Endou, J., Katoh, S., & Ishihama, M. : Steel research int. special edition 2012, (2012), 319-322.
- 10)Hagino, N., Endou, J., Katoh, S., & Ishihama, M. : Procedia Engineering 81 (2014), 1073–1078.
- 11)Hagino, N., Komiya, S., Ishihama, M. : Proceedings of IN-TECH2015, (2015), 50-53.
- 萩野直人・遠藤順一・加藤俊二・石濱正男: 塑性と加 工, 57-669 (2016), 983-990.
- 13) Hagino, N., Komiya, S., Endou, J. & Ishihama, M. : Key Engineering Materials, **716** (2016), 528-535.
- 14) 萩野直人・小宮聖司・遠藤順一・石濱正男:第67回 塑加連講論,(2016), 51-52.
- 15) 山本美明:超音波基礎工学,(1981),日刊工業新聞社.
- 16)Sato, M. : Acoustical Science and Technology, 24-6 (2003), 415-418.
- 17)長谷芳樹・村上雅英・原康人・渡辺好章:電子情報通 信学会技術研究報告.US,超音波, 104-14, (2004), 1-4.
- 18)木村友則・三須幸一郎・和高修三・小池光裕:電子情報通信学会技術研究報告.US,超音波,105-619,(2006), 11-16.