極短パルスレーザを用いた天然歯とジルコニアの

高精度歯科プロセス

東京医科歯科大学 医歯学総合研究科 助教 本村 一朗 (平成 25 年度一般研究開発助成 AF-2013209)

キーワード:極短パルスレーザ,アブレーション加工,ジルコニア歯科補綴物,象牙細管

1. 研究の目的と背景

近年の短パルスレーザ発振の技術の進歩は目覚ましく、従 来の熱加工とは異なるアブレーション加工を用いた金属など の精密マイクロ加工へ応用が進んでいる.一方で、従来のダ イヤモンドルーターを用いた歯科治療のレーザへの置き換え が試みつつあるが、YAGレーザ等では高温による炭化や陥没 現象が生じ、表面層の平滑な加工が容易でない課題が残さ れている.治療後の歯には、クラウンなどの人工歯が適用され るが、近年は審美性からセラミックスなどの白色人工歯の需要 が増える一方で、代表的なジルコニア製補綴物では接着力が 不足する課題が残されている.

本研究では、フェムト秒あるいはピコ秒レーザなどの超短パ ルスレーザを用いた歯科技工および歯科治療の高度化に関 する検討を試みた.

最初に、ジルコニア製補綴物表面をフェムトレーザで表面 修飾することによる接着力の改善効果を検討した.

続いて、フェムト(ピコ)レーザを用いて、天然歯のレーザ加 工特性を実験的に明らかにした.

最後に、象牙細管を伝わる圧力測定:歯髄腔隙内に設置し たマイクロ圧力センサおよび熱センサによりレーザ処置時の痛 み低減に関する考察を行った.

図1 極短パルスレーザを用いた時に考えられる歯科技工および 歯科治療の利点

2. ジルコニア補綴物の表面修飾

ジルコニア製の(義歯などの)歯科補綴物は,白く高強度で あるために審美的にも摂食機能的にも最善の選択肢であるが, 化学的に安定で他と接着し難く,かつ硬脆性のために加工も 困難である.この問題に対して,焼結体をポーラス化して接着 強度を得る工夫などの試みが報告されている¹⁾.一方,超短 パルスレーザを用いたアブレーション加工は,高強度で脆性 なジルコニア表面を高精度に加工する有力な手段であり,超 短パルスレーザで表面微細形状を付与する試みも始まってい る²⁾.

本研究ではフェムト秒レーザにより正確な微細テクスチャを ジルコニア表面にアブレーション加工して、それによる機械的 締結力を利用した接着力の改善に関する基礎的検討を行っ た.

2.1 実験方法

(1) 完全焼結ジルコニア表面の微細溝加工

実験には、完全焼結された直径 5mm のジルコニア製ピンゲ ージ端面を使用した. 3µm のラッピングシートで仕上げた後に、 フェムト秒レーザを用いたアブレーション加工により2 種類のパ ターンの微細溝群を加工した. 溝設計断面形状は深さ 50µm, 幅で 50µm である. 1 つはこの溝断面形状をもつ直線溝をピッ チ 100µm で平行に端面全域に加工したものである. もう1 つは、 同じ溝をピッチ 100µm で平行に端面全域に加工した後に、そ れらに直交する並行溝群を前面に追加工したものである.

(2) ジルコニアと支台ブロックの接着

ジルコニアに対する被接着物には、その端面をガラスプレパ ラート上で平滑平坦に形成した歯科用支台築造材料を用いた. 接着域はピン端面中央の直径 4mm の範囲をマスキングフィル ムにより制限して接着した.接着剤の厚さは、接着保持装置に 併設した渦電流センサを用いて計測した.また、マスキングフィ ルムの厚さを変更することにより、接着剤厚さを20~100µm 程度 に変更した.直径 4mm の接着域に対して 500g の荷重の負荷 状態で接着剤の重合反応開始領域480nm 付近を含む可視光 線照射により重合・接着した.

表 1	ジルコニ	P表面微細溝加工
-----	------	----------

Blank	Fully sintered zirconia pin guage Diameter: $d = 5 \text{ mm}$ Length: $l = 10 \text{ mm}$
Surface finish before laser processing	Lapping with diamond lapping sheet (3 µm)
Laser processing	Femto-second fiber Laser Wavelength : (1552 nm) Pulse width : < 800 fs
Processing conditions	Pulse energy : 9 μJ Feed (spot) : 5 μm

(a) Ultra short pulsed laser processing of end of zirconia pin

図2 ジルコニア表面微細溝断面形状

図3 ジルコニアと歯科用支台築造材料ブロックとの接着

表2歯科接着用レジンセメントおよび歯科用支台	}築造材料	,
------------------------	-------	---

Self-adhesive	Clearfil SA Cement Automix,
resin cement	SA Cement Plus Automix
	(J.MORITA corporation)
Core build-up	CLEARFIL DC CORE PLUS
material	(J.MORITA corporation)
-	

(3) せん断剥離強度試験

接着強度は、図 4 の圧縮せん断試験により評価した. せん 断押し込みパンチはくさび形状であり、せん断試験速度は 1mm/sである. 図中の¢は各溝方向に対するせん断試験方向 である.

図4 ジルコニアー支台ブロック接着面の圧縮せん断試験

2.2 実験結果

(1) 完全焼結ジルコニア表面の微細溝加工

図 5 および 6 は、それぞれフェムト秒レーザ加工により得ら れた並行溝と直交溝の SEM 写真およびレーザ顕微鏡計測の 結果である.得られた溝の平均深さは 51µm で平均幅は 53µm である.直交溝ではその交差部位は 2 度加工されるた めにさらに深い.また、溝壁面は集束レーザのケラレの問題か ら約 60°に傾斜している.

(a) SEM image

(b) Confocal laser microscope view and cross-sectional profile

図5 ジルコニア表面への微細溝加工結果(平行溝群)

(b) Confocal laser microscope view and cross-sectional profile
図 6 ジルコニア表面への微細溝加工結果(直交溝群)

(2) せん断剥離強度試験

図7は、ラッピング端面、微細並行溝を付与した端面および 微細直交溝を付与した端面の接着強度試験の結果である. 微細並行溝では平均値が約50%、微細直交溝では最大で2 倍程度にせん断強度が増大している.

図 8 は、最大せん断強度を示した微細直交溝の場合の破 断後の試験片表面であるが、接着剤は表面に微細溝を付与 したジルコニア端面側に付着したままであり、一方、支台ブロ ック表面は大きくえぐれており、ジルコニアーセメント間の接着 強度が支台材料の強度を超えている.

したがって,実用上は図 5,6 のような緻密な溝群は必要なく, より少ない溝数あるいはより大きな周期をもつ溝で十分な強度 が得られる.

図7 圧縮せん断試験結果

図8 ジルコニア・セメントの破断面

3. 天然歯のレーザ加工特性

臨床において YAG レーザ等を応用した限局的なレーザ使 用は行われているが、空冷下・水冷下で利用されまた高温に よる炭化や陥没現象が生じるため、表面層の平滑な加工が容 易でない課題が残されている.本研究では天然歯に対してフ ェムト秒(ピコ秒)レーザを用い、天然歯のレーザ加工特性を 実験的に明らかにする事を目的とした.

3.1 実験方法

実験には東京医科歯科大学附属歯科病院・口腔外科で同 意を得て抜去された天然歯を用いた. 直径 20mm(内径 16mm)のアクリルパイプにアクリリックレジンを用いて包埋後, 低速切断機を用いて作成された割断試料を用いた.フェムト 秒(ピコ秒)レーザを用いた. 使用条件は表 4,5 に示す.

表4天然歯のレーザ加工条件(フェムト秒)

Blank	Horizontal section of human tooth
Laser processing	Femto-second fiber Laser Wavelength : (800 nm) Pulse width : < 80 fs
Processing conditions	Pulse energy (µJ,): 100, 200, 300, 390

表5天然歯のレーザ加工条件(ピコ秒)

Blank	Horizontal section of human tooth
Laser processing	Pico-second fiber Laser Wave length : (1069 nm) Pulse width : < 10 ps
Processing conditions	Pulse energy (µJ,) : 100, 200

3.2 実験結果

(1) フェムト秒レーザ加工

図 9 にフェムト秒レーザ加工で得られたエナメル質~象牙 質のレーザ顕微鏡計測結果の一例を,図 10 にその結果を示 す.得られた溝の深さはエナメル質で 20-58 µm,象牙質で 124-253 µmであった.エナメル質では加工エネルギーの増加 による深さの変化は微量であったが,象牙質では加工エネル ギーの増加に伴い加工深度の増加が認められた.これは構 成成分の違いによる差と考えられた.

(2) ピコ秒レーザ加工

図11にピコ秒レーザ加工で得られたエナメル質~象牙質のレ ーザ顕微鏡計測結果の一例を、図12にその結果を示す.得 られた溝の平均深さはエナメル質で28-30µm,象牙質で 65-73µmであった.エナメル質,象牙質共に加工エネルギー の増加による深さの変化は微量であった.また加工表面には 炭化と見られる像が認められた.このことよりピコ秒レーザは従 来から用いられているYAGレーザ等と同様と考えられた.

図9 天然歯割断面の超短パルスレーザ加工

図10 各組織の超短パルスレーザ加工深度

図 11 天然歯割断面の超短パルスレーザ加工

図 12 各組織の超短パルスレーザ加工深度

4.象牙細管を伝わる圧力のリアルタイム測定

回転切削器具を用いた治療時の痛みを客観的かつ定量的 に評価するのは容易でない. Dental hydro-dynamics theory に よれば象牙細管を通して処置時の圧力が伝達して神経を圧 迫するメカニズムが提唱されており、これによれば歯髄腔内の 圧力等を正確に計測できれば定量的な評価が可能となる.本 研究では、超小型光ファイバー圧力センサと極細シース熱電 対を用いて、処置時の歯髄腔内の情報をリアルタイムに抽出 する方法を提案し、モデル実験により本法の有効性を検討し た.

図 13 "Dental Hydrodynamic theory"の概要

4.1 実験方法

使用した圧力センサは、ファイバー直径 800µm のファブリペ ロー干渉計式光ファイバー超小型圧力センサ(FOP-M, レンジ: 0-340kPa, FISO Technology Inc.)で、最高サンプリング周波数 200kHz のシグナルコンディショナーを通して計測した.一方、 熱電対は、外径0.15mmのシース熱電対(2K2S1.5, K-type, 新 熱工業(㈱)である.両センサを一体化したマイクロ熱・圧力セン サを、アルミ製ジグに接着固定した天然歯の歯髄腔内に設置し た.歯髄腔内は蒸留水で満たして、シリコーンチューブを通し て大気圧相当に設定した.これに対して、切削時の歯髄腔内 の圧力と温度の変化をデータロガーで記録した.

表6 歯髄内圧力・温度のリアルタイム計測実験条件

Blank	Fully sintered zirconia pin guage Diameter: $d = 5 \text{ mm}$ Length: $l = 10 \text{ mm}$
Surface finish before laser processing	Lapping with diamond lapping sheet (3 µm)
Laser processing	Femto-second fiber Laser Wavelength : (1552 nm) Pulse width : < 800 fs
Processing conditions	Pulse energy : 9 μJ Feed (spot) : 5 μm

図 14 歯髄内圧力・温度のリアルタイム計測実験装置

図 15 歯髄内リアルタイムモニタリング実験装置 (センサ周辺詳細)

図 16 歯髄内リアルタイムモニタリング実験装置 (センサ周辺詳細)写真

4.2 実験結果

上顎中切歯切縁部象牙質を歯科用エンジン(20000r pm, ラ ウンドバー: CA12)で切削したときに,約 1kPa の圧力上昇およ び約 0.5℃の温度上昇を示した.

図17 歯髄内の圧力・温度計測結果

5. まとめ

本研究では、フェムト秒あるいはピコ秒レーザなどの超短パ ルスレーザを用いた歯科技工および歯科治療の高度化に関す る検討を試みた.最初に、フェムト秒レーザにより正確な微細テ クスチャをジルコニア表面にアブレーション加工、それによる機 械的締結力を利用した接着力の改善に関する基礎的検討を行 った.続いて、フェムト(ピコ)レーザを用いて、天然歯のレーザ 加工特性を実験的に明らかにした.最後に、象牙細管を伝わる 圧力測定:歯髄腔隙内に設置したマイクロ圧力センサおよび熱 センサによりレーザ処置時の痛み低減に関する考察を行った. 得られた結果は以下のとおりである.

a) 完全焼結ジルコニアのラッピング端面を基準とすると、微細 並行溝を付与した端面では平均値が約50%、微細直交溝を付 与した端面では最大で2倍程度にせん断強度が増大する.

b) 最大せん断強度を示した破断後の試験片表面では, セメント(接着剤)は表面に微細溝を付与したジルコニア端面側に付着した状態で, また支台ブロック表面は大きくえぐれ, ジルコニアーセメント間の接着強度は支台材料の強度を超えている.

c) フェムト秒レーザ加工において、エナメル質では加工エネ ルギーの増加による深さの変化は微量で、象牙質では加工エ ネルギーの増加に伴い加工深度の増加が認められる. ピコ秒 レーザ加工において、加工エネルギーの増加による深さの変 化は微量で、加工表面に炭化と考えられる像が認められる.

d) マイクロ圧力センサおよび熱センサを用いた実験により、レ ーザ処置時の痛み低減の可能性が認められる.

本研究は東京医科歯科大学倫理委員会の承認を得て行われた(承認番号 1119). 一部は 93rd General Session & Exhibition of the IADR³⁾, 平成 27 年度 塑性加工春期講演会⁴⁾, 94rd General Session & Exhibition of the IADR⁵⁾にて発表を行った.

謝 辞

本研究の実施にあたり、ご支援いただいた公益財団法人 天田財団 および ご協力いただいた中村英雄先生、山本 仁先生、吉川文広先生に感謝します.

参考文献

- Tang, X., Nakamura, T., Usami, H., Wakabayashi, K., and Yatani H.: Effects of multiple firings on the mechanical properties and microstructure of veneering ceramics for zirconia frameworks. J. Dent. 40. 372-380 (2012).
- N., Bärsch, S., Barcikowski, K., Baier: JLMN-Journal of Laser Micro / Nanoengineering, 3-24, (208), 78.
- H.Nakamura, K.Motomura, Y.Michi, M.Yamamoto, T.Yoshioka, S.Tanaka. Monitoring Pressure and Temperature in Dental Cavity Through Micro Sensors.93rd General Session & Exhibition of the IADR, 178, Boston, USA(2015).
- 4)田中繁一、中村英雄、本村一朗.フェムト秒レーザ表面修飾によるジルコニア歯科補綴物の接着強度の改善. 平成27年度塑性加工春期講演会,138-139,横浜(2015).
- F.Yoshioka, K.Motomura, H.Nakamura, T.Yoshioka, M.Yamamoto, S.Tanaka. Improving adhesion of zirconia by surface modification. 94rd General Session & Exhibition of the IADR, 128, Seoul, Korean (2016).