高強度金型の熱クラック防止に関する研究

首都大学東京 大学院 理工学研究科 機械工学専攻 教授 若山 修一(平成 25 年度一般研究開発助成 AF-2013031)

キーワード:高強度金型材料、熱クラック、ディスクオンロッド試験

1. 研究の目的と背景

加工の高速化、高応力化に伴い、金型や切削工具等の 耐久性・耐磨耗性を向上させるために超硬合金の利用が 普及しているが、さらに被加工品の表面性状の向上を目 指し、より表面平滑度の高いサーメット、さらにはセラ ミックスの使用が推進あるいは検討されている。しかし ながら、これらの材料は塑性変形能が低い本質的な脆性 材料であり、耐熱衝撃性が低いことが弱点になっている。

塑性加工中には、摩擦により金型が局所的に急加熱さ れる場合や、加熱された金型の表面が潤滑油で急冷され る場合に大きな熱応力が発生し、その繰り返し(熱疲労 破壊)で熱クラックが発生することがある。また、押し 出し金型を型枠に焼ばめで設置しようとした際に即時 破断(熱衝撃破壊)を生じる例も知られている。これらの 問題を解決するためには、熱応力を十分に考慮した金型 設計技術や耐熱衝撃性に優れた材料の開発が不可欠で あり、熱クラックの発生および進展、すなわち熱衝撃(疲 労)破壊メカニズムの解明および評価法の確立がこれら の材料および金型等の信頼性を確保するためのキーテ クノロジーといっても過言ではない。

従来の熱衝撃破壊試験は、加熱した試験片を水中投下 によって急冷し、その残留応力を測定する方法が用いら れており、セラミックスの場合は JIS R 1648「ファイ ンセラミックスの熱衝撃試験方法」 に規格化され、サ ーメットにも利用されている。しかしながら、子の試験 では、評価できるのは臨界温度差のみであり、材料間の 耐熱衝撃性の相対的な比較しかできない、などの問題点 が指摘されている。熱衝撃破壊は、局所的な急冷や急加 熱に起因する熱流束によって形成される温度場によっ て生じる遷移的な熱応力の下で、ミクロ損傷が発生・蓄 積して巨視き裂(熱クラック)が生成される現象であり、 熱衝撃の際の熱応力の評価、およびき裂の発生・進展な どの破壊過程の評価、の2つを同時に行うことが不可欠 である。

そこで本研究では、高強度金型における熱クラック発 生防止技術の開発を目的とし、高強度金型に用いられる 超硬合金、サーメットおよびセラミックスの熱クラック 発生挙動の評価手法の開発を行った。特に、最も脆性的 な破壊挙動を示すセラミックスを研究対象とし、後述の ような著者らが開発したディスクオンロッド試験を改 良して、種々の熱応力比のもとでの熱クラック発生挙動 を評価した。

2. 実験方法

2.1 試験片

試験片には代表的なエンジニアリングセラミックス であるアルミナセラミックスを用いた。

原料のアルミナ粉末(α-Al₂O₃)には大明化学工業㈱製 タイミクロン TM-D を使用し、4 MPa で一軸圧縮後、200 MPa で冷間等方加圧(Cold Isostatic Press, CIP)により成 形体を得た。そして得られた円板状成形体を切削し任意 の形状に加工した. その後,高温大気炉で焼結温度 1,500 ℃、保持時間 2 時間、昇温・降温速度 5 ℃/min. で焼結した。

得られた焼結体は両面を鏡面研磨し、厚さの調整と鏡 面処理を施した。さらに、水分による応力腐食割れの影 響を除去するため、真空中にて乾燥させ試験片とした。

なお、密度および開気孔率の測定は JIS1634 に従い行った。鏡面研磨後の試験片をリン酸でエッチング処理し SEM により微視構造を観察し、得られた画像から粒径 の測定を行った。また、熱伝導率はレーザーフラッシュ 法を用いて測定した。

2.2 ディスクオンロッド試験

前述のように、熱クラック発生挙動を理解するには、 推移する熱応力場と、その下でのミクロ損傷の発生・進 展によって生じる熱クラックの発生過程の両方を同時 に評価する必要がある。著者らは新たな熱衝撃破壊試験 方法としてディスクオンロッド(Disc-on-Rod)試験法を 開発してきた⁽¹⁻⁴⁾。図1にディスクオンロッド試験の概 要を示す。本試験では、予加熱したディスク状薄板試験 片に低温に保持した金属ロッドを接触させ中央部のみ を冷却することにより2軸引張熱応力を発生させて熱 衝撃を与える。その際、金属ロッド下部にAE センサを 取付け、金属ロッドを冷却媒体及び導波棒として用いる

ことにより、AE センサを保護すると同時に微視割れな どの損傷に伴う AE 信号を検出し微視破壊過程を評価す ることが可能である。また、試験中の試験片表面の温度 分布を赤外線カメラでモニタリングし、FEM 解析によっ て熱応力場の時間履歴を計測している。なお、試験片の 板厚は直径に比べて十分小さいため、板厚方向の応力は 無視でき、平面応力としての取り扱いが可能である。

従来は円形薄板試験片を用いていたため、試験片中央 部で得られる最大熱応力は等2軸であったが、本研究で は、楕円形試験片とすることで任意の応力比が得られる ように工夫した。

2.3 ディスクオンロッド試験システム

図2にディスクオンロッド試験システムの模式図を 示す。円板もしくは楕円板試験片を IR ランプで加熱し、 ホルダごと回転・降下させて、冷却ロッドと接触させた。 その際、降下速度をエアダンパで制御し、接触による AE 信号を抑制している。

試験中、IR カメラを用いて試験片表面の温度分布を

図2 ディスクオンロッド試験システム

約 60 fps で計測した。またビデオカメラによりき裂の発 生を録画した。微視損傷の発生蓄積過程を明らかにする ために、銅ロッド下部に取り付けられた AE センサを用 いて AE 計測を行った。AE センサには、共振周波数 180kHz のアンプ内蔵の高感度センサを使用した。ゲイ ン 55 dB、しきい値 6.9 dB、計測周波数範囲 25~2000 kHz とした。

2.4 試験条件の決定(熱応力場の FEM 解析)

実験に先立ち、所望の熱応力比の得られる試験片およ び冷却ロッドの形状を決定するため、熱応力解析を行っ た。試験片の1/4 モデル(10 接点アイソパラメトリック 四面体要素)を作成し、ディスクオンロッド試験を伝熱 解析と構造解析の連成問題として模擬した。

モデルは厚さを 0.6 mm とし、一般的なアルミナの物 性値を与えた。所定の初期温度から、全体の表面を室温 (25 ℃)に急冷した。その際、ロッドとの接触部以外に は空気との熱伝達係数(5 W/m²・K)を与え、接触部の熱 伝達係数 h を大きくすることで中央部のみの急冷を再

図3 熱応力解析結果

図4 作製した試験片

現した。

試験片とロッドの寸法のほか、初期加熱温度 T₀、接触部の熱伝達係数hを変えた解析を行い、中心で生じる 最大熱応力及び熱応力比に着目し、最適な試験条件を検 討した。

3. 結果および考察

3.1 熱応力解析による試験片・ロッドの形状の決定お よび試験片の作製

種々の条件で熱応力解析を行った結果、試験片中心部 の熱応力比の挙動は試験片とロッドの形状に強く依存 し、熱伝達係数や初期温度は熱応力比にはほとんど影響 しないことが示された。

図3に熱応力解析結果の一例を示す。図右にあるよう に、ロッドの形状は、試験片の短径aおよび長径bから 一定のクリアランス e を差し引いた寸法の楕円の場合 が最も安定した応力比の挙動が得られることがわかっ

Amplitude

た。図は、初期加熱温度 $T_0 = 850$ °C、接触部の熱伝達係 数 $h = 2500 \text{ W/m}^2 \cdot \text{K}$ の場合の試験片中心部の長径方向 の最大熱応力(第1主応力) σ_1 と熱応力比 R の推移を示す が、e = 7 mmとした場合が最も大きな熱応力が発生す るものの、熱応力比は e = 5 mmの場合が最も安定して 一定の値を取ることが理解される。結局、本研究では、 熱応力比 R = 1 の場合は a = 35 mm、b = 35 mm、e = 5.5 mm、R = 0.5 cは a = 27 mm、b = 35 mm、e = 5 mm、R = 0.25 cは a = 21 mm、b = 35 mm、e = 5 mm とした。

上述のように決定した条件に従って作成した寸法の 試験片を図4に示す。いずれも厚さは0.6 mm で統一し た。得られた平均粒径は2.5 µm、見かけ密度は3.93 g/cm³、 開気孔率は0.32 %、熱伝導率は35.3 W/(m・K)、比熱は 0.76 J/(g・K)であった。

3.2 ディスクオンロッド試験

作成した試験片に対して、ディスクオンロッド試験を 行った。図5に、円板試験片、すなわち熱応力比 R=1、 初期温度 T₀ = 550 $^{\circ}$ Cの場合のディスクオンロッド試験 結果を示す。試験片中心部に最大熱応力 σ_1 が発生し、 単調に増加して最終破断に至っている。また、試験片終 身部の熱応力比 R はほぼ1で一定に推移しており、等2 軸熱応力のもとで熱クラックが発生し破断に至ったこ とが理解される。図右に破断後の試験片を示すが、最大 熱応力の発生した試験片中心部から放射状に直線的な 熱クラックが進展している。AE 発生挙動を見ると、試 験初期から小振幅の AE が検出され、最終破断時に大振 幅の AE が検出された。以上の結果から、急冷直後から 最大熱応力の発生する試験片中心部にミクロ損傷が発 生・蓄積し、熱クラックが発生と同時に不安定進展して 破断に至ったことが推察される。

図6 ディスクオンロッド試験結果(R=0.5、T₀=650□)

一方、図6は、楕円板試験片を用いたディスクオンロ ッド試験、すなわち熱応力比 R=0.5、初期温度 T₀ = 650 □ の場合の試験結果である。この場合、試験片とロッドの 接触が不均一(いわゆる片当たり)となり、最大熱応力は 試験片中心から長軸方向にややずれた箇所で発生し、そ こを起点として熱クラックが発生して最終破断に至っ た。そこで、図には試験片中心部と最終破断位置(=最大 熱応力発生位置)の両方の熱応力(第1主応力)σ1と熱応 力比 R の推移を示す。図より、最終破断位置では中心 部より常に大きな熱応力が発生している。また、接触は 不均一であったものの、最終破断位置および試験片中心 部のいずれでも熱応力比は目標とした値0.5付近で推移 した。図右に破断後の試験片を示すが、最大熱応力発生 点から発生した熱クラックは、湾曲と枝分かれを伴いな がら進展し破断に至っていることが理解される。また、 試験開始の直後に大振幅の AE 信号が検出され、その後 停滞した後、再び大振幅 AE 信号が検出されて最終破断 に至っている。以上から、最大熱応力発生点で生成した 熱クラックは一旦停止し、湾曲と枝分かれしながら進展 して最終破断に至ったと推察される。

以上のように、試験片とロッドの形状を最適化するこ とで任意の熱応力の下での熱クラック発生・進展過程の 評価が可能になったことが示される。

4.結び

本研究では、高強度金型材料の熱クラック発生を防止 することを最終目標として、種々の熱応力比のもとでの 熱クラック発生挙動の評価技術の開発を行った。著者ら が開発したディスクオンロッド試験を改良し、試験片と ロッドの形状を円形から楕円形にし、それらの寸法を最 適化することで、任意の熱応力比のもとでの熱クラック 発生過程の評価が可能となった。

一方で、試験片とロッドの接触が付近位置になる課題 が残っており、今後は試験片ホルダやロッドのアライメ ントの調整が容易な試験システムの開発を進める予定 である。また、種々の機械的応力のもとでの破壊過程の 評価も行い、例えば高強度金型材料の新規設計などによ る熱クラック防止のための基礎的知見を明らかにして いく所存である。

謝 辞

本研究の遂行に対し、公益財団法人 天田財団から一 般研究開発助成金によってご支援いただいたことを記 し、心より謝意を表します。

参考文献

- S. Wakayama, S. Kobayashi and T. Wada, Journal of Acoustic Emission, Vol.23, pp. 150-155 (2005)
- T. Sakai, S. Wakayama, G. Kametani, K.Yoshida and T. Akatsu, Bulletin of JSME Mechanical Engineering Journal, Vol. 1, No. 1, pp. 1-10 (2014)
- T. Akatsu, H. Takashima, Y. Shinoda, F. Wakai and S. Wakayama, Int. J. Appl. Ceram. Technol., 1–9 (2016)