結晶塑性有限要素法のための単結晶材料パラメータの同定

東京工業大学 工学院 機械系 機械コース 助教 寺野 元規 (平成25年度一般研究開発助成AF-2013013)

キーワード:単結晶純鉄、材料試験、静的再結晶、結晶塑性有限要素法

1. 研究の目的と背景

近年の省エネルギー化,省資源化への対応のため材料特 性向上が強く望まれている.その一つの方策として結晶組 織制御技術が注目されている.結晶組織制御による材料開 発は合金元素の削減,リサイクル性の向上に有効である. また材料異方性をも自在に制御できるという特徴があり, 特に自動車用鋼材や電磁鋼板の開発に有効である.さらに, 結晶組織制御技術は国内産業だけに留まらず,世界的な環 境問題,資源問題の解消に貢献ができると期待できる.

結晶組織制御による材料開発,およびその材料異方性を 最大限に生かした製品開発には,結晶塑性有限要素法によ る解析が有効である.結晶塑性有限要素法は個々の結晶内 の転位挙動を構成式に導入したものであり,圧延やプレス などのマクロな加工プロセスの解析に結晶方位,結晶粒形 状,結晶粒サイズなどの影響因子を取り入れたマルチスケ ール解析を行うものである.本解析には転位挙動を表すた めの10を超える材料パラメータを適切に定めることが 重要である.しかし,これらの材料パラメータは直接定め ることが出来ないため,近年の多くの研究にも関わらず解 析の信頼性が十分でないという問題がある.

そこで本研究では、単結晶純鉄を対象に、結晶塑性有限 要素法に必要な材料特性の測定を行う.また、ひずみ付与 後の熱処理による再結晶・粒成長過程の時系列観察を行い、 結晶組織制御の可能性を検討する.

2. 試験方法

2.1 供試材料

試験片は直径 6 mm の純鉄単結晶(Fe 純度:99.994%)を 用いる.この単結晶丸棒より,図 1,2 のようなせん断試 験片および引張試験片をワイヤ放電加工で作製する.

せん断試験片の寸法は長さ4 mm, 幅 3 mm, 厚さ 0.7 mm であり,表1の方位となるよう作製した.

引張試験片の各部寸法は全長 3.5 mm, 平行部幅 0.75 mm, 平行部長さ 1.5 mm, 厚さ 2~3 mm であり, 初期の オイラー角は表 2 のとおりである.

表2	引張試験片の初期方位			
試驗	オイラ一角 /deg.			
	φ1	Φ	φ2	
Α	14.2	155.1	270.1	
В	112.0	83.7	67.8	
С	324.8	121.9	302.2	
D	96.4	118.7	30.4	
Е	158.3	117.9	332.4	
F	22.0	45.3	52.5	
G	222.1	45.3	52.5	
Н	166.1	120.6	332.1	
I	30.6	29.8	84.4	

2.2 せん断試験装置の概要

せん断試験装置の模式図を図3に示す.パンチ幅は1.8 mm,パンチ・ダイのクリアランスは片側0.1 mm である. また,パンチ・ダイの厚さ(奥行)は5 mm である.

図3 せん断試験装置 図4 引張試験治具

2.3 引張装置の概要

図4に引張試験治具を示す.左右にガイドを取付け,試 験片をチャックするために端面を楔形状に加工した.この 治具を図5に示す引張試験装置に取り付け,引張試験する. 本装置はモーターによりボールねじを介してクロスヘッ ドを駆動する.クロスヘッドが平行に動くよう,ボールね じの左右にガイドを取り付けた.引張荷重は平行はり構造 の自作ロードセルにより測定する.

3. 試験結果

3.1 せん断試験結果^{1),2)}

純鉄単結晶について,表1に示す初期結晶方位を有する 試験片に対し、せん断試験を行った.図6にせん断試験に おける荷重-ストローク線図を示す.結晶方位により,異 なる結果が得られた.これらの結果より、せん断応力・せ ん断ひずみを算出すると図7のようになる.今回行ったせ ん断試験では、曲げが生じてしまったが、今回は曲げの影 響を無視し、パンチ押込み量からせん断応力およびせん断 ひずみを算出した.本結果を用いて,結晶塑性理論に基づ き、活動すべり系(12の主すべり系)の臨界分解せん断 応力 τ_c を算出すると表3のようになった. 試験片3を除 き臨界せん断応力 τ_c はほぼ一定(約27 MPa)となってい る. 試験片3が他と大きく異なっている原因として, 試験 片の曲げの影響が考えられる.図8に試験後の試験片3 の断面写真を示す.また、図 9 に試験後の試験片および EBSD 測定結果を示す. パンチおよびダイのクリアラン ス部でせん断変形が起こっている.また,試験片の湾曲が 確認できる.試験方法の改善(クリアランス量の調整,板 押さえなど)により、曲げ変形の影響がより少なくする必 要がある.

図6 せん断試験における荷重・ストローク曲線

表3 臨界分解せん断応力

図8 試験片3の断面写真

IPF map (r direction) IQ map 図9 せん断試験後の試験片および EBSD 測定結果

次に,結晶組織制御の可能性を検討するため,せん断ひ ずみ付与後の試験片に600℃で熱処理を行い,再結晶粒の 観察を行った.図10に600℃で熱処理後のIPFマップを 示す.試験条件はパンチ押込み量S=0.8,0.9 mm および 熱処理時間T=10,30 min.である.どの試験片もダイエ ッジ近傍で静的再結晶が起きている.これはダイエッジ近 傍でひずみが集中し,静的再結晶の駆動力になったためと 考えられる.パンチ押込み量が大きい,すなわち,ひずみ が大きいほど再結晶粒径は大きく,熱処理時間が長いほど 再結晶が進んでいる.以上より,比較的小さな塑性ひずみ を付与し,緩やかに再結晶を起こさせる方法が再結晶粒の 制御に適していると考えられる.

3.2 引張試験結果³⁾

せん断試験では、試験片に曲げ変形が加わり、またダイ 近傍でひずみが集中してしまった.そこで、これらの影響 を受けない試験として、引張試験をした.なお、引張試験 速度は 0.2 mm/s で一定である.また、引張治具にはガイ ドとの摩擦を低減するために二硫化モリブデングリスを 塗布した.

図 11 に試験片 A の荷重・伸び線図を示す. 結晶方位が 同じになるよう切出した3種類の試験片(A1, A2, A3)につ いて, ひずみ量を変えて引張試験した. A1, A2, A3の荷 重・伸び線図はおおむね一致しており, 再現性を確認でき た. 図 12 に試験片 A の引張前後の結晶方位変化を示す. 引張による格子回転が生じていることがわかる. A3 は最 大荷重を超えているため, 局部くびれがしょうじているた め, 結晶方位のばらつきが大きくなった.

図11 引張試験における荷重・伸び曲線

図 12 引張試験における結晶方位変化(試験片 A)

引張試験後,静的再結晶過程を観察するため,図13に 示すプロセスで熱処理(焼鈍)と EBSD 観察を繰り返し た.各焼鈍は 600℃・アルゴン雰囲気で行い,焼鈍時間は それぞれ 0.5 分,1.5 分(計2分),3 分(計5分),5 分 (計10分),20分(計30分),90分(計120分)行い, 各焼鈍後には EBSD 観察を行った.

図 14 試験片 A の IPF Map

試験片 A における引張後と焼鈍時間 3 分,5 分の IPF Map を図 14 に示す.引張量が大きいほど,多くの再結晶 粒が生じた.また,焼鈍時間が長くなると,再結晶粒が成 長している過程を観察できた.A3 試験片のように,くび れが生じるような大きな引張ひずみを加えてしまうと,全 域が再結晶してしまい,再結晶粒の成長の観察が困難であ る.そこで,以降の試験では,A1,A2 のように一様伸び の領域で静的再結晶過程の観察を行った.

図15に試験片Eにおける静的再結晶過程の観察結果を 示す.焼鈍時間が長くなるにつれ,静的再結晶が進行して いる.再結晶粒の発生位置について,以下の手法で調べる. まず,結晶塑性理論に基づき,12個の主すべり系のみ作 用すると仮定し,EBSD分析結果から引張試験における シュミット因子を算出する.次に,このシュミット因子と

引張応力から各すべり系に働くせん断応力を算出する. そ の後,アサロの式(m=0.5 と仮定)を用いて,せん断ひ ずみ速度を求め,変形中一定の仮定のもと,せん断ひずみ 量の和 $\Sigma\gamma^k$ を求めた. 試験片 E, F, H についてせん断ひず み量の和 $\Sigma\gamma^k$ を求めた結果を図 16 に示す. 再結晶の発生 はせん断ひずみ量の和 $\Sigma\gamma^k$ を考慮すると, $\Sigma\gamma^k$ の絶対値の 大小によらず,その差が大きい箇所から発生している. EBSD 分析から得られる結晶方位差を示す KAM マップ もおおむね $\Sigma\gamma^k$ の分布と一致していることから,転位密度 差の大きな箇所で再結晶(もしくは粒成長)が起きたと言 える.

図16 再結晶粒の発生位置

図 17 再結晶粒の粒成長(試験片 E)

図18 各試験片における予引張ひずみ量と再結晶の関係

焼鈍時間と再結晶の関係を調べるため,比較的大きく再結晶粒が粒成長した粒に注目し,各焼鈍時間における再結晶面積を求めた.試験片 E の結果を図 17 に示す.焼鈍時間5分までは急速に粒成長がおきており,それ以降は緩やかに再結晶が進んでいる.

次に,各試験片における 120 分間焼鈍後の再結晶粒面 積を図 18 示す. 横軸は試験後の平行部長さから算出した 引張ひずみである. 方位により再結晶が起こる引張ひずみ 量は異なるが,0.2 程度あれば今回試験した方位では再結 晶が生じた.

3.3 結晶塑性有限要素法による解析結果⁴⁾

引張試験で得られたデータを元に,結晶塑性有限要素法 に必要な材料特性を求め,引張試験の解析を行う.解析に は ABAQUS を用い,ユーザサブルーチンとして UMAT を用いる.図 19 に解析モデルを示す.試験片形状は図 2 と同形状とし,2100 要素(要素タイプ 3D8R)に分割し た.その他の条件は,図中に示すとおりである.

図19 解析モデル

解析では BCC 金属の 12 の主すべり系のみを考慮し, すべり系 α におけるすべり速度 $\dot{\gamma}^{\alpha}$ は

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \left[\frac{|\tau^{\alpha}|}{k_s^{\alpha}} \right]^{\frac{1}{m}} sign(\tau^{\alpha})$$

$$k_s^{\alpha} = h_0 \left(1 - \frac{k_s - k}{k_s - k_0} \right) \sum_{\alpha=1}^{N} |\dot{\gamma}^{\alpha}|$$

と仮定する. なお, 各パラメータの定義は表4のとおりで ある. また, 引張試験結果より各パラメータを求めた結果 も加えて示す. この各パラメータを用いて, 引張試験を解 析した結果を図21に示す. 解析結果と試験結果はおおむ ね一致している. しかし, 特定方位の解析結果は試験結果 と一致しておらず, 今後の課題である.

表4 解析パラメータ

т	Strain rate sensitivity factor	0.05
Ϋ́ο	Reference shear rate	0.001
h_0	Initial hardening rate	109 <i>MPa</i>
κ_0	Initial strength of slipping system	176 MPa
κ _s	Saturation strength of slipping system	251 MPa

図 21 結晶塑性有限要素法による解析結果

本解析では12の主すべり系のみを考慮したが、より高 精度に解析するには、補助すべり系も考慮する必要がある と考える、補助すべり系も考慮した結晶塑性有限要素解析 は今後進める予定である.

4. まとめ

本研究では、結晶塑性有限要素法の高精度化を目指し、 単結晶純鉄を供試材として、材料特性の測定を行った.ま た、ABAQUSを用いて、測定した材料特性から求めたパ ラメータを用いて結晶塑性有限要素法による解析を行っ た.また、各試験に供した試験片を熱処理することにより、 静的再結晶過程の観察を行った.得られた結果を以下にま とめる.

(1) せん断試験結果より,結晶塑性理論に基づき,活動 すべり系の臨界分解せん断応力を求めると約27 MPa であった.また,せん断試験後の再結晶過程の観察よ り,再結晶粒を制御するためには比較的小さな塑性ひ ずみを付与し,緩やかに再結晶を起こさせる必要があ ると考えられる.

- (2) 様々な結晶方位の試験片について引張試験を行い, 焼鈍と EBSD 観察を繰り返すことにより,静的再結晶 の進行過程を時系列的に観察した.その結果,静的再 結晶の発生はせん断ひずみ量の和Σγ^kの差が大きい箇 所(KAM 値の差が大きい箇所)から発生することが わかった.また,再結晶粒は主に引張ひずみが 0.2 程 度の試験片で観察された.
- (3) 本試験で得られた結果を元に、材料パラメータを算出した.また、これらのパラメータを用いて、ABAQUSのUMATを利用して結晶塑性有限要素法による引張試験の解析を行った.今後、より高精度な解析をするため、12の主すべり系のみでなく、補助すべり系も考慮した結晶塑性有限要素解析を進める.

謝 辞

本研究は公益財団法人天田財団の平成25年度一般研究 開発助成(AF-2013013)の援助により行われた.ここに記し て同財団に深く感謝の意を表します.

参考文献

- 寺野元規,矢部慎太郎,吉野雅彦:"純鉄単結晶における静的再結晶過程に及ぼす塑性変形の影響",第66回塑 性加工連合講演会,(2015),pp. 215-216.
- 2) Shintaro YABE, Masahiko YOSHINO, Motoki Terano: "Fundamental study on crystalline structure for development of functional surface", Porceedings of LEM21_2015, (2015).
- 3) 寺野元規,矢部慎太郎,吉野雅彦:"純鉄単結晶における静的再結晶過程に及ぼす引張変形の影響",平成28年度塑性加工春季講演会,(2016),pp. 321-322.
- 4) 駱自超, 寺野元規, 吉野雅彦: "Numerical study of influencing parameters of single crystal iron static recrystallization", 日本機械学会関東支部第 22 期総 会講演会, (2016), GS0413.