レーザ切断における溶融金属の3次元その場透過観察による

加工現象の解明

三重大学 大学院工学研究科助教 尾崎仁志(平成 24 年度一般研究開発助成 AF-2012210)

キーワード:レーザ切断,切断フロント,X線透過観察

1. 緒言

レーザ切断は産業界で最も早くから取り入れられ,シート材の切断ツールとして広く定着したレーザ加工法の1 つである¹⁾.一方,レーザ切断の高速化及び高品質化が常 に求められており,そのためにはレーザ切断の加工現象の 解明が重要であると考えられる.

レーザ切断は,被加工材に集光したレーザビームを照射 し,それを溶融または蒸発させることにより溝(カーフ) を形成する.その際,溶融金属や酸化物を含む液状の生成 物(ドロス)が,適切な圧力のアシストガスによって除去 される.そのため,高い切断品質を達成するためには,ド ロスが被加工物の裏面からスムーズに排出される必要が あり²⁾,このときのドロスの排出挙動が,切断品質に影響 することが知られている.

一方,ドロスの排出挙動は切断フロントの形状に影響を 受けると考えられることから,レーザ切断部を直接その場 観察することが望ましい.しかし,レーザ切断は切断速度 が比較的速く,被加工物である金属が可視光を透過しない ことなどから,レーザ切断部をそのように観察することは 困難である.

Schober ら³⁾はレーザ切断中の切断フロントを高速度カ メラにより外部から撮影し,幾何学的にその形状を推察し ている.また,山田ら⁴⁾はレーザ切断の数値シミュレーシ ョンを行い,切断フロントの形成過程について解析的に検 討している.しかし,レーザ切断中の切断部を直接観察し た例についてはほとんど報告されてない.そのため,X線 透過装置を適用すれば,レーザ切断中の切断部をその場観 察でき,かつレーザ切断の加工現象を直接的かつ効果的に 把握できるのではないかと考えた.

そこで本研究では、レーザ切断現象について検討するために、X線透過装置を用いたレーザ切断中の切断部のその 場観察を試みた.観察対象として、一般的によく行われている酸素をアシストガスとする軟鋼のレーザ切断を選択した.まず、レーザ切断部の2次元その場観察を行い、切 断速度等の切断条件が、レーザ切断フロント及びドロスの 排出挙動に及ぼす影響について検討した.その後、3次元 その場観察により、試験片内部におけるドロス挙動の3 次元的な把握を試みた. 表1 供試材の化学組成

C	Si	Mn	Р	S	
0.18	0.27	0.68	0.019	0.020	(mass%)

図1 観察用治具の外観

図2 実験装置の概略図

2. 実験方法

2.1 供試材

一般的な酸素アシストガスによる軟鋼のレーザ切断を 想定し,供試材として,みがき棒鋼用一般鋼材 SGD3M を 用いた.化学組成を表 1 に示す.

試験片寸法は4×120×4mmとし、ピアシングの代替と してφ2の穴を切断開始点に設けた.また,試験片の両端 にφ2.2の穴を開け、それらの穴を使用して試験片を図 1 に示すような観察用治具に固定した.なお、切断前に試験 片表面をエタノールで脱脂し,試験片の長手方向にレーザ 切断を行った.

2.2 実験装置

実験装置の概略を図 2 に示す. レーザ切断装置として, 16kW ディスクレーザ発振器及び切断ヘッドを使用した. なお,レーザの波長は 1030nm, BPP は 8mm*mrad,ファ イバー径は 200 µ m,レンズ焦点距離は 200mm である.

2.3 切断条件

レーザ切断条件として、アシストガスを O_2 とし、切断 速度を $0.5 \sim 7m/min$ 、アシストガス圧力を $0.25 \sim 1MPa$ と 変化させて実験を行った. その際、レーザ出力 2kW、焦 点はずし距離-1mm、ノズルギャップ 1mm、及び切断長 70mm は一定とした.

2.4 透過観察装置

レーザ切断部の透過観察装置として,高輝度 X 線透過 型溶接接合機構 4 次元可視化システムのうち,マイクロフ オーカス X 線発生装置(最高解像度 4µm,最大電圧 230kV, 最大電流 1mA)を使用し,図 2 に示したように,試験片 の側方からレーザ切断中の切断フロントを観察した.

3.実験結果および考察

3.1 レーザ切断形態の整理

図3に、レーザ切断後の試験片を観察し、その切断形 態によって整理したプロセスウィンドウを示す.

切断速度の変化により、セルフバーニング(▼印),良 好な切断(○印),ドロス付着(△印),及びガウジング(× 印)となる条件が得られた.良好な切断となる切断速度は, アシストガス圧力が1MPaのとき2m/min,0.5MPaのとき 2~3m/minにおいて現れた.また,アシストガス圧力の変 化により,切断形態が変化する条件が見られた.

本報では、アシストガス圧力 0.5MPa において、切断速 度を変化させた際のその場観察結果について検討する.

3.2 レーザ切断中の切断部の2次元X線透過観察

図 4 にレーザ切断中の切断部の X 線透過観察の例を示

す. 画像右上に見える物体はアシストガスノズルの先端で あり, その下の矩形が試験片である. X線は密度が小さい 箇所ほど透過しやすいため, 試験片のうち切断されていな い箇所とカーフ部では画像の灰色の濃度が異なる. そのた め, レーザ及びアシストガスが同軸で出てくるアシストガ スノズルの直下において, 切断フロントを側方から観察し た際の2次元形状を把握することができた.

図 5 に切断速度を変化させたときの切断長中央付近に おけるレーザ切断部の X 線透過観察画像を示す. なお, 画像中の切断方向は図 4 と同一である.

セルフバーニングとなった(a)では、切断フロントの形 状が時間と共に変化し、不安定であった.また、レーザ通 過後の試験片の一部が消失した.これらの現象は 1m/min 以上の切断速度では観察されなかったため、入熱過多によ るセルフバーニング特有の過剰な酸化反応によるもので あると考えられる.

次に(b)~(e)の切断フロント形状は,おおよそ安定かつ 一定であった.(b)では切断フロントが試験片表面に対し てほぼ垂直に形成されているが,切断速度の増加とともに 切断フロントの下部が傾斜していくことが分かる.これは, 切断フロント上部ではレーザによる溶融が支配的で,下部 では上部から移動してきたドロスと酸素ガスによる燃焼 作用による溶融が支配的であり,レーザによる溶融に対し 燃焼作用による溶融が遅れるためであると考えられる⁵⁾. 一方,ガウジングとなった(f)では,レーザが材料を貫通し ていない様子が観察された.

また図 3 より, 切断速度 2m/min 及び 3m/min が良好な 切断条件であったが, 図 5(c)及び(d)において両者の切断 フロント形状がほぼ同様であることを考慮すると,良好な 切断となる最適な切断フロント形状が存在することが示 唆される.

3.3 切断フロント形状の定量化

前節にて、切断速度の増加により切断フロントの形状が 変化していることが分かった.そこで、切断フロント形状 が変化する現象について検討するため、その定量化を試み た. 楠元らの報告^のを参考に、図 6のように切断フロント の遅れ角(Lag angle)及び遅れ量(Lag distance)をそれぞれ測 定した.

図 7 に各アシストガス圧力における切断速度と遅れ角 との関係を示す.切断速度を増加させると、遅れ角が減少 することが分かる.よって、溶接速度の増加により、切断 フロント下部が試験片表面に対し垂直な状態から徐々に 傾斜していくことを確認した.また、図 3 における良好 な切断条件から判断すると、切断フロントの最適な遅れ角 は70~80°程度であると考えられる.

図 8 に各アシストガス圧力における切断速度と遅れ量 との関係を示す.切断速度を増加させると,遅れ量も増加

することが分かる.よって,溶接速度の増加により,切断 フロント下部の後方への遅れが増加することを確認した. また,図3における良好な切断条件から判断すると,切 断フロントの最適な遅れ角は0.4~0.6mm 程度であると考 えられる.

3.4 ドロス排出挙動の観察

図5に示した切断長中央付近におけるX線透過画像を 画質調整することにより,試験片裏面からのドロス排出挙 動も同時に観察できた.図9に切断長中央付近における試 験片下部のX線画像を示す.

図9 切断長中央付近における試験片下部のX線画像

セルフバーニングとなった(a)では、ドロスの排出は切 断フロントの直下からだけではなく、切断フロントから離 れた箇所からも起こっていた.また、ドロスは様々な方向 に排出されていた.また、ドロス付着条件となった(b)で は、ドロスは切断フロントの直下のみから排出されていた. しかし、ドロスの排出方向は不安定で、ドロスが前後に遥 動していた.また、試験片の裏面においてドロスの飛散が 起こるときがあった. 次に(c)及び(d)では、ドロスは切断フロント直下のみか ら排出されており、ドロスが排出される方向もおおよそ安 定していた.再びドロス付着条件となった(e)では、ドロ スは切断フロント直下のみから排出されていたが、一部の ドロスは試験片の裏面を後方に流れ、そのまま残留してい た.

また図 3 より, 切断速度 2m/min 及び 3m/min が良好な 切断条件であったが, 図 9(c)及び(d)において両者のドロ スの排出挙動がほぼ同様であることを考慮すると, 3.2 節 と同様に,良好な切断となる最適なドロス排出挙動が存在 することが示唆される.

3.5 ドロス排出挙動の定量化

前節にて、切断速度の増加によりドロス排出挙動が変化 していることが分かった.そこで、ドロス排出挙動が変化 する現象について検討するため、その定量化を試みた.楠 元らの報告^のを参考に、図 10 のようにドロス排出角 (Inclination angle of ejected dross)を測定した.

図 10 切断フロント下部におけるドロス排出角

図 11に各アシストガス圧力における切断速度とドロス 排出角との関係を示す.切断速度を増加させると、ドロス 排出角が減少することが分かる.また、切断速度が遅いと き、排出角のばらつきが大きくなった.さらに、図 3 に おける良好な切断条件から判断すると、最適なドロス排出 角は 80~100°程度であると考えられる.

図11 切断速度とドロス排出角との関係

3.6 切断フロント形状とドロス排出挙動との関係

3.3 節にて、切断速度の増加により切断フロントの遅れ 角が減少し、前節では、切断速度の増加によりドロス排出 角が減少したことから、両者には何らかの相関があること が予想される.

そこで,図12に切断フロントの遅れ角とドロス排出角 との関係を示す.図より,切断フロントの遅れ角とドロス 排出角は相関があることが分かった.よって,ドロスの排 出挙動が切断フロントの形状の影響を受けることが,レー ザ切断中のその場観察から直接確認できた.

図 12 切断フロントの遅れ角とドロス排出角との関係

3.7 試験片内部でのドロス挙動の3次元その場観察

前節までのレーザ切断部の2次元その場観察では, 試験 片内部でのドロスの挙動については不明であった. そこで, トレーサとして直径0.5mmの超硬合金(WC)球を試験片に 埋め込み,2組のX線透過装置を使用することにより,ト レーサの挙動を3次元その場観察した.それにより, 試験 片内部でのドロス挙動を3次元的に把握できるか試みた.

その結果、レーザがトレーサに直接照射され、トレーサ が消失することが多く、トレーサの挙動を観察できたのは 一部の切断条件のみであった.その中で、レーザ切断中に おけるトレーサ軌跡の3次元可視化に成功した例を図13 に示す.図中の斜円錐の右端が切断フロントに相当し、(a) 及び(b)の両者はともに図3における良好な切断条件のも のである.(a)において、トレーサはほとんど動いていな いことが分かる.一方、(b)においてトレーサは初期位置 にしばらく留まった後、切断方向に対して後方に移動して いる.

しかし,(a)及び(b)の切断条件では,3.4 節においてドロ スの排出が切断フロント直下から安定的に起こっていた ことから,図13におけるトレーサの軌跡は,試験片内部 でのドロスの挙動とは異なる可能性が高い.また,その他 の切断条件においてもトレーサ軌跡の3次元可視化を試 みたが,図13と同様の結果となった.よって,試験片内 部のドロス挙動の3次元的な把握方法については,実験方 法を含め,今後さらなる検討が必要である.

4. 結言

X 線透過装置によりレーザ切断部のその場観察を行った結果,以下の結論を得た.

- (セルフバーニング、良好な 切断、ドロス付着、ガウジング)において、切断フロン ト及びドロスの排出挙動を観察することができた。
- 2) 良好な切断条件では、切断フロントの形状及びドロス の排出挙動の両者が安定していた.
- 3) 切断速度の増加により、切断フロントの形状が変化す ることを直接確認した、切断速度が増加すると、切断フ ロントの遅れ角は減少し、遅れ量は増加した.
- 4) その場観察により、ドロスの排出挙動が切断フロントの形状の影響を受けることが、レーザ切断中のその場観察から直接確認された.

以上より、レーザ切断において良好な切断を達成するた めの、最適な切断フロント形状及びドロス排出挙動が存在 するものと考えられる.

謝 辞

本研究は、公益財団法人天田財団 平成 24 年度 レーザ プロセッシング 一般研究開発助成 AF-2012210 の助成を 受け、国立大学法人大阪大学 接合科学研究所「接合科学 共同利用・共同研究拠点」共同研究員制度を利用したもの です. ここに深く感謝いたします.

参考文献

- レーザー学会編:レーザープロセシング応用便覧,エ ヌジーティー, (2006), 164.
- 2) 新井武二, 沓名宗春, 宮本勇: レーザー切断加工, マシニスト出版, (1994), 5.
- A. Shober, J. Musiol, R. Daub, J. Feil, M. F. Zaeh: Experimental Investigation of the Cutting Front Angle during Remote Fusion Cutting, Physics Procedia, 39 (2012), 204-212.
- 4) 山田知典、山下晋、杉原健太、村松壽晴:レーザー加 工のシミュレーション、プラズマ・核融合学会誌、89-7 (2013)、500-506.
- 5) 金岡優:絵ときレーザ加工の実務,日刊工業新聞社, (2007),14.
- 楠元一臣,大谷有吾:切断前方形状からみた溶融金属 排出挙動の検討,溶接学会全国大会講演概要,71 (2002), 284-285.
- 7) 楠元一臣,大谷有吾:プラズマアーク切断における溶融金属の排出挙動,溶接学会全国大会講演概要,70 (2002),198-199.