Selective Laser Melting 法による カスタムメイド人工顎骨の開発に関する研究

九州大学 九州大学病院 顔面口腔外科 講師 住田知樹 (平成24年度一般研究開発助成 AF-2012204)

キーワード:骨造成、カスタムメイド治療、咀嚼(咬合)回復

1. 研究の目的と背景

近年のイノベーションの中でも、現在一番の進歩と勢いを感じるのは、3次元テクノロジーに関する製品であろう。3次元テクノロジー製品は今や、産業界に留まらず医療業界にも大きく進出している。中でも、口腔領域は限られた範囲と言うこともあってか広く応用され、この先数年で歯科治療従来の手法を変えようかという勢いである。

さらに近年口腔インプラント治療が一般的治療になり つつ有り、患者の求める結果も高いものとなった。さら に難症例の患者であっても避けられない状況が見られる ようになってきている。難症例とは多くは骨量が不十分 でインプラントを植立できないといったものである。今 回本助成金により、骨造成における3次元プリンターの 有用性を検証させていただいた。従来の方法では、薄い チタンの遮蔽膜や、吸収性のコラーゲン遮蔽膜を使用し ていたため、スペースメイキングが難しく、予想した形 の造骨が困難であった。

今回、いくつかの規格化された形状のサンプルと共に 実際の患者に適合するいわゆるカスタムメイドのチタン 遮蔽膜を造形し、その精度を検証することを目的とした。 どの程度の正確性を持った複雑な形状の遮蔽膜を作製す ることが出来るか、作製物の精度検証を行い臨床応用可 能かどうか、あるいはどの部分を改良すれば可能になる かを明らかにすることを目的とし研究を行った。

2. 実験方法

2.1 規格化された試験片の作製

2.1.1 材料と方法

材料はすべての実験で、生体親和性を考慮し純チタン パウダーを用いた。規格試験片は2種類とした。

平面的な形状と立体的な形状のもの 2 種類を作製、検証 することとした。まず、Computer-Aided-Design (CAD)を 行うに当たって、Geomagic[®]Freeform[®](3D Systems, Rock Hill, SC)を用いて、幅 20.0 mm、奥行 20.0 mm、厚み 0.5 mm の気孔 直径 1.0 mm)を有した 1 次元試験片を設計した (Fig. 1. A)。同様に、幅 9.6 mm、奥行 9.6 mm、厚み 9.7 mm の多孔構造(直径 0.6 mm)を有した 3 次元試験片を設計 した。これは、CAD データに基づいて、気孔率が約 65%と なるように設計した(Fig. 1. B)。データはファイル変換 後、選択的レーザー溶融(以下 SLM 法)法でチタン造形 が可能な三次元造形機 EOSINT[®]M270 (Eos GmbH, Krailling, Germany)プリンターを用いて行った。 それぞれ10個の試験片を作製した。

2.1.2 実臨床に向けたチタン遮蔽膜の作製

このサンプルについては骨造成を必要とする患者の CT データを用いた。CAD は先ほどと同じく Geomagic[®] Freeform[®] (3D Systems, Rock Hill, SC)を用いたが、患 者により顎堤の形が異なるため、それぞれ異なる遮蔽膜 が設計された(Fig. 2. A)。造形データはこれも同じくファ イル変換後、3次元造形機 EOSINT[®]M270 (Eos GmbH, Krailling, Germany) プリンターを用いて行った (Fig. 2. B)。 患者の個人データを扱うため九州大学病院倫理委員会 の承認を得て、患者の同意のもと行った。10人の患者か らデータを得ることができ、造形に至った。

2. 2 各種造形精度試験

2.2.1 2次元、3次元試験片の寸法精度検証

マイクロメーター: MDC-25MX[®] (Mitutoyo Corp., Osaka, Japan) を用いて 2 種類の試験片の寸法精度を検証した。 3 名の計測者で試験片の X 軸・Y 軸・Z 軸の所定部位の計 測を行った。また、同一部の測定を平均 3 回としたが、 これは日を改めて行った。

2.2.2 2次元、3次元試験片の気孔径の精度検証

試験片の気孔径の精度検証は、フォトエディター: Photoshop[®]CS3 (Adobe Systems, San Jose, CA)を用いて 行った。試験片平面と平行となる位置にカメラを設置し、 試験片中心にピントを併せてスケールと共に撮影した。 次に、その画像から対象となる気孔を選択しピクセル数 を計測した。対象となる気孔毎に解像度が異なるため, スケールより単位ピクセル数を測定し、気孔の面積及び 気孔径を算定し造形精度を検証した (Fig. 3. A)。

2.2.3 3次元試験片における気孔率の精度検証

後述する 3 次元試験片の気孔率の精度検証するために 使用される方法は、Porter らの過去の研究において使用 した方法を参照した^{1, 2, 3)}。10 個の試験片から 4 個の試 験片を無作為に選択し、それぞれを比重が 0.7839 g/cm³ の IPA 液に沈めて重量を計測した (Fig. 3. B)。 3 次元 試験片の重量を m、IPA 液に沈めた場合との重量差を md とすると試験片の密度 ρ は次式より算出された。

$$\rho = \frac{m}{m_d} \times 0.7839$$

次に,試験片の体積を V、試験片の外寸から得られる 体積を Vexとすると、相対体積 Vrelと試験片の気孔率 ø は次式より算出され、気孔率の検証をした。

$$V_{rel} = \frac{V}{V_{ex}} = \frac{m/\rho}{V_{ex}}$$

$$\varphi = (1 - V_{rel}) \times 100$$

Fig. 3.

2.2.4 カスタムメイド試験片の造形精度検証

Fig.4に示すように、このケースではインプラント2 本を埋入シミュレーションし、チタンメッシュを設 計した (Fig.4.A, B)。造形されたチタンメッシュを 非接触式3次元形状計測器 RexcanARX[®] (Solutionix Corp., Seoul, Korea) でスキャニングし、3次元デ ータとして保存した.次に、カスタムメイド型チタ ンメッシュの CAD データとスキャンデータを三次元 データ処理ソフトウェア Geomagic[®]XOM (3D Systems Corp., Rock Hill, SC) に入力し、2つのデータを重 ねあわせカラーマッピングを用いて凹凸誤差検証を した (Fig.4.C)。

Fig. 4

3. 実験結果

3.1 2次元、3次元試験片における寸法精度検証

CAD と SLM 技術を応用して造形された 2 次元試験 片 (n=10)、3 次元試験片 (n=10)の寸法精度検証の 結果を Table 1、2 に示した。 2 次元試験片の平均 寸法は、X 軸方向に 19.926 mm ± 0.016 mm、Y 軸 方向に 19.923 mm ± 0.012 mm であった。 3 次元試 験片の平均寸法は、X 軸方向に 9.691 mm ± 0.019 mm、 Y 軸方向に 9.699 mm ± 0.028 mm、Z 軸方向に 10.080 mm ± 0.028 mm であった。

Table 1. Actual values of the dimensions of 2D and 3D specimens

	ODV	ODV	ODV	ODV	0.0.7
	2DXas	2DYas	3DXas	3DYas	3DZas
	20.0 mm	20.0 mm	9.6 mm	9.6 mm	9.7 mm
1.	19.941	19.911	9.688	9.699	10.201
2.	19.938	19.891	9.689	9.699	10.064
3.	19.928	19.924	9.695	9.657	10.240
4.	19.931	19.923	9.667	9.693	10.017
5.	19.932	19.911	9.671	9.727	10.077
6.	19.935	19.921	9.686	9.713	10.033
7.	19.912	19.931	9.683	9.735	10.039
8.	19.899	19.933	9.699	9.677	10.073
9.	19.898	19.931	9.693	9.731	10.040
10	. 19.941	19.931	9.743	9.663	10.019
Av	e. 19. 926	19.923	9.691	9.699	10.080
	± 0.016	± 0.012	±0.019	± 0.028	± 0.028

実測値をTable1にまとめ、その結果をIS02768-1に基 づいて評価を行った.IS02768-1は普通公差について規 定されており、精級(f)、中級(m)、粗級(c)、極粗級(v) のように等級を定めている。2次元試験片は高い寸法精 度を示した。一方、3次元試験片はX軸方向、Y軸方向 については高い寸法精度を示したが、Z軸方向について は IS02767-1 の許容範囲内ではあるが、誤差を最も呈する結果となった。

3.2 2次元、3次元試験片における気孔径の精度検証

2次元試験片、3次元試験片の気孔径の設計はそれぞれ 1000 μ m、600 μ m とした。検証の結果、2次元試験片 の気孔径の平均は998.21 μ m ± 17.62 μ mを示し、3 次元試験片の気孔径の平均は618.55 μ m ± 21.06 μ m を示し、その結果を同様にIS02768-1 に基づいて評価を 行いTable 2 に示した。実測値はTable 3 にまとめた。 結果、元試験片の気孔径はともに高い造形精度を示した。

Table 2. Evaluation of accuracy of pore diameters of 2D and 3D specimens based on ISO 2768-1

		Ν	f	m	С
2D	specimen	10	10	0	0
3D	specimen	10	10	0	0

N: number of specimens. Tolerance classification, f: fine, m: medium, c: coarse

Table 3. Verification of the accuracy of porosities (ϕ) of 3D specimens designed for expected 65%

	m (g)	m_{d} (g)	ho (g/cm ³)	$V (cm^3)$	
1	1.4473	0.2658	4.27	0.3391	
2	1.3816	0.2516	4.30	0.3210	
3	1.5058	0.2698	4.38	0.3441	
4	1.5796	0.2849	4.35	0.3634	
AVE.	1.4786	0.2680	4.325	0.3419	

Table 4. Verification of dimensional accuracy for 2D and 3D specimens based on ISO 2768-1

	Ν	f	m	С	V
2DXas	10	8	2	0	0
2DYas	10	9	1	0	0
3DXas	10	9	1	0	0
3DYas	10	6	4	0	0
3DZas	10	0	0	8	2

N: number of specimens. Tolerance classification, f: fine ($\pm 0.1 \text{ mm}$), m: medium ($\pm 0.2 \text{ mm}$), c: coarse ($\pm 0.5 \text{ mm}$), v: very coarse ($\pm 1.0 \text{ mm}$)

3.3 3次元試験片における気孔率の精度検証

3次元試験片の気孔率の精度検証の結果を Table 2 に 示した。気孔率は、3次元試験片の外寸体積における 気孔体積の割合を示すが、Geomagic[®]Freeform[®]を用い て約 65% に設計した。各試験片の実際の気孔率を測定 し、その平均は 67.8%を示した(Table 5)。

Table 5. Verification of the accuracy of porosities (ϕ) of 3D specimens designed for expected 65%

	<i>m</i> (g)	m_d (g)	ho (g/cm ³)	$V (\rm cm^3)$
1	1.4473	0.2658	4.27	0.3391
2	1.3816	0.2516	4.30	0.3210
3	1.5058	0.2698	4.38	0.3441
4	1.5796	0.2849	4.35	0.3634
AVE.	1.4786	0.2680	4.325	0.3419

4. 考察

本研究で得られた結果は、一般的に妥当とされる結果 が示された。本研究で SLM 法を応用した3次元造型機と して用いた EOSINT®M270 は多くの実験で採用されており、 一貫して高品質の結果が得られている。それ故、本研究 における実験の全ての結果において妥当な説明を叙述す ることができる。EOSINT®M270は、造形テーブルに敷き詰 めた純チタン粉末層を、レーザービームで焼結融解する。 1 層焼結融解する毎に Z 軸方向に 30 µm ずつ積層造形し ていくことで、任意の複雑な形状の純チタン構造物を造 形することができる。しかし、Fig.1 Bと Table 1、2 に 示すように、3次元試験片のZ軸方向の寸法精度は、X軸 方向、Y 軸方向のそれと比すると精度はやや劣った。これ は最終造形物の生成時における、純チタン粉末の積層造 形の過程に起因することが考えられた。例えば、小さい 構造物、特に平面状の構造物であれば影響は少ないと考 えられる。しかし、Z 軸方向に大きい構造物の場合は異 なる。 EOSINT[®]M270 は Z 軸方向に 30 μm 積層する時に、 造形テーブルを30 µm下げ、その厚みに純チタン粉末を リコーターと呼ばれるローラーを用いて敷き詰める。そ の後、1層積層造形し、また純チタン粉末を敷き詰め、 これを造形完了まで反復する。従って、Z 軸方向の造形精 度は使用される純チタン粉末の粒径の影響を受けやすい ことが考えられる。本研究で使用した純チタン粉末の平 均顆粒は 30 µm であるが、一部,最大 45 µm の顆粒も 含まれている。従って、造形過程において、ある部分に やや大きめの顆粒が混在し、適正な高さで補正されなか ったことが Z 軸方向の誤差の原因であることが説明で きる。もし本研究において、より小さく均一な粒径を有 する純チタン粉末が使用することができたならば、Z軸方 法により精度の高い造形ができた可能性が示唆された。 それにもかかわらず、 Z 軸方向の寸法誤差は IS02768-1 で規定された普通公差に収まり、寸法精度としては許容 範囲であった。従って、この得られた結果は普通公差を 達成しており、本研究の目的であるカスタムメイド型チ タンメッシュの造形精度評価としても十分であったこと が示唆された。しかしながら、カスタムメイド型チタン メッシュはより複雑な形状を有する場合もあるため、こ の2次元試験片と3次元試験片の寸法精度の結果だけで 十分とはいえない。次に、2次元試験片と3次元試験片 の気孔径の実測値と検証を Table 3、4 に示した。試験片 の気孔を撮影し、その気孔径を解析した。気孔径の解析 に際して、諸家の報告を参照し Photoshop℃S3 を用いて 行った³⁾。2次元試験片と3次元試験片の合計 20 個にお いて全て、IS02768-1 で規定された普通公差の精級を示し た。従って、の大きな利点の一つであると考えられる。 Table 5 に気孔率の実測値を示したが、これは比重が規定 された IPA 液を用いることで、密度と比重の差から、3 次元試験片の外寸の体積に対する気孔率の割合を算出し た。CAD上では約65%に設計をしたが、4つの試験片の平 均は 67.8% ± 1.5%であり、寸法精度検証を立証する値を 示した。これは、前述したように、3次元試験片の気孔 率は SLM 法を用いているため、積層造形の過程、収縮を うけやすいことによると考えられる。

カスタムメイド型チタンメッシュ試験片の凹凸誤差は Geomagic®XOM を用いて検証したが、臨床応用を想定した 場合、十分な精度を有していることが示唆された。メッ シュ CAD データとメッシュスキャンデータの平均凹凸誤 差は、全てのデバイス、全ての部位において 139 μm 以 下であった。また Fig. 4. C に示すよう、最大凹凸誤差 は各デバイスの辺縁に認めた。この凹凸誤差の差異も SLM 法の造形過程に起因している可能性が示唆された。従っ て、CAD -SLM 技術による造形は、平面状の体部より湾曲 した縁部の形状を得ることが困難だと考えられる。しか し、通常、骨造成治療において、患部以外の部位から採 取した自家骨や骨補填材が用いられるがその顆粒径を考 慮するとこの誤差はあまり重要ではないと考えられる。 また、通常、骨造成治療は骨が濡れた状態で施行し吸収 性のメンブレンで覆うので、その最大凹凸誤差が 292 μ mであれば、カスタムメイド型チタンメッシュは自家骨や 骨補填材を十分覆うことができると考えられる。

そもそも、歯槽骨造成治療は1990年代初頭にSimonら により初めて報告され、重度歯槽骨吸収症例に対し、イ ンプラントとチタン製非吸収性膜を用いて施行された⁴⁾。 その後、Cano らにより仮骨延長術をもちいた骨造成治療 が報告された⁵⁾。近年、3次元造型機を用いた歯科治療へ の応用について諸家の報告がされるようになった。他の 研究と比較して本研究から得られた最も需要な知見は、 CAD-SLM 技術プロトコールに基づいた,高い造形精度を 達成している点である。われわれの作製したデバイスの 形状は、他の研究と比べて、湾曲し気孔を有した形状に もかかわらず、高い造形精度を示した。形された構造物 は非常に高い精度を示した。したがって、次のステップ として、このカスタムメイド型チタンメッシュの臨床応 用への可能性が考慮された。

謝辞

本研究を支援して頂きました公益財団法人天田財団 に深く謝意を表します。

参考文献

1). Pevzner Y, Frugier E, Schalk V, Caflisch A: Woodcock HL. Fragment-based docking: Development of the CHARMMing Web user interface as a platform for computer-aided drug design. 54:2612-20. 2014

2). Porter MM, Imperio R, Wen M, Meyers MA, McKittrick J: Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv Funct Mater 24: 1978-1987, 2014.

3). Tang XN, Berman AE, Swanson RA, Yenari MA: Digitally quantifying cerebral hemorrhage using Photoshop and Image J. J Neurosci Methods 190: 240243,

2010.4). Simion M, Trisi P, Piattelli A: Vertical ridge

augmentation using a membrane technique associated with osseointegrated implants. Int J

Periodontics Restorative Dent 14: 496-511, 1994.

5). Cano J, Campo J, Moreno LA, Bascones A: Osteogenic alveolar distraction: A review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: 11-28, 2006.