電子ビーム照射による金型の長寿命化に向けた表面改質

鳥取大学大学院 工学研究科 助教 赤尾 尚洋 (平成 24 年度 一般研究開発助成 AF-2012012)

キーワード:表面改質,電子ビーム加工,セラミックス-金属複合層

1. 研究目的

近年、自動車製造を中心としてハイテン等の高強度鋼の搭載率 が高まっており、この強度の高いソイテン等を成形する冷間加工 用金型や切削加工用工具の短寿命化が問題となっている). これ を解決するための材料開発等さまざまな技術開発が行われており, 成果も現れてきている2.しかし、コスト面で言えば、従来用いら れている金型鋼 (SKD11等) の長寿命化処理の実現が求められて いる. このような目的の為、従来は金型や工具鋼の表面に耐摩耗 性・耐熱性に優れた硬質セラミックス (CrN, TiN, TiCN 等) のコ ーティングが行われている.しかしながら、コーティング材料と 母材間での熱膨張係数や熱伝導率など物性値の差による界面剥離 等の問題から膜厚は~10µm程度に抑えられており、耐久性が大 きな課題となっている.一方,電子ビーム表面加工機は,電子ビ ーム(EB)を照射し材料表面を局所加熱することにより、鏡面加工 やバリ除去加工,表面仕上げ加工などに用いられてきた 3,4. さら に最近では、EB照射による熱間工具鋼の熱疲労特性の向上⁵,超 硬合金の平滑化のなど幅広い応用研究が報告されている.

そこで本研究では、EB加工により母材表面において局所的高温 を発生し硬質セラミックス粉末と母材合金を溶融複合化し(図 1)、 耐摩耗性に優れる皮膜を形成する手法を検討した.ここでは、ま ず EB 照射により母材である金型工具鋼が受ける影響を調査し、 つぎに硬質セラミックス粉末を塗布した試料に対し EB 照射を行 い、溶融複合層の形成およびその性質を調査した.

鉄鋼材料と硬質セラミックスの傾斜機能複合化は、これまでも SPS⁷や液相焼結法⁸等により精力的に研究されているが、ここ で注目している EB 照射による溶融複合化の機構が明らかになれ ば、既存の金型や工具に対して母材表面の深さ方向に傾斜組成を 持たせることが可能となり、母材とコーティング層との接合強度 は大幅に改善され、比較的低コストで耐久性の高いコーティング が可能となる.また、超硬合金皮膜の形成は高速フレーム溶射

図1. 電子ビーム照射による金型表面 への溶融複合層形成の模式図

(HVOF)等でも報告されているが⁹,本手法で用いる EB 照射で は局所加熱が可能となるため、母材への熱影響が抑制され精度の 高い金型等に応用でき、さらに真空中で行われることから、酸化 物や窒化物の生成が抑制され高品質の皮膜形成が期待される.

2. 実験方法

基板として用いる金型工具鋼は冷間金型鋼(SKD11)および熱間工具鋼(SKD61)を用意した. それぞれの化学組成を表1に示す. これらの圧延板材(厚さ3mm)を10mm角に切断したのち, 圧延面を鏡面研磨した. EB 照射のみの影響を調査する際には、この鏡面試料を用いた.

金型鋼と複合化させるセラミックス材料として、SiC(99.5%, 2 ~3 μ m), TiN(99%, 1~2 μ m), WC(99%, ~5 μ m), およびWC-Co 混合粉末を用いた. ここでWC-Co 粉末はWC 粉末に対し粒径 5 μ mのCo 粉末を 17 wt.%添加し、メカニカルミリング処理を行 い作製した. これらセラミックス粉末をエタノール中に分散しス ラリー状にしたものを金型鋼の研磨表面に厚さ50 μ m 程度塗布し た. 乾燥後, 電子ビームマルチ加工機 (多田電機 e-Flush) を用い,

表 1. 本研究で用いた冷間金型鋼 (SKD11) および熱間金型鋼 (SKD61) の化学組成 (wt%)

	С	Si	Mn	Р	S	Cr	Мо	V
SKD11	1.40 ~1.60	~0.40	~0.60	~0.03	~0.03	11.00 ~13.00	0.80 ~ 1.20	0.20 ~0.50
SKD61	0.35 ~0.42	0.80 ~1.20	0.25 ~0.50	~0.03	~0.02	4.80 ~5.50	1.00 ~1.50	0.80 ~1.15

図 2. EB照射(4mA)した金型鋼のSEM像 (a) SKD11表面, (b) SKD61表面, (c) SKD11断面, (d) SKD61断面.

EB 照射処理を40kV, 1~4mAの出力条件にて行った.また走査 条件はピッチ0.04mm,周波数10kHzとし,最終的な走査速度0.4 m/sとした.試料評価として,光学顕微鏡,SEMによる表面およ び断面観察,XRDによる相同定,電子線プローブマイクロアナラ イザー(EPMA)による元素分析を行い,また照射による硬さの変 化を調査する為、断面深さ方向のマイクロビッカース硬さを荷重 10gf,15s保持にて測定した.

3. 実験結果および考察

3.1. EB 照射による金型鋼の微細組織,結晶相及び硬さに与える影響

セラミックスと複合化を行う前に、まずEB 照射により金型鋼 母材が受ける影響を調査した. EB 照射後(4mA)のSKD11およ びSKD61 各試料の表面および断面のSEM 観察結果を図2に示 す. どちらの金型鋼においても、EB 照射により表面付近に厚さ40 μm 程度の加工層が形成された. SKD11 に関しては、断面下部に 見られるSKD11 に特有のクロムと鉄の複炭化物(MrC3)の相(濃 い灰色) が加工層では消失している(図 2(c)).一方,表面には成 長方位の異なる微細な樹枝状組織が観察された(図 2(a)).これは EB 照射熱により局所的に溶融し,その後急冷されることにより, M-C3の析出前に急速に凝固成長した結果だと考えられる.SKD61 に関しては,表面にはマルテンサイト変態の痕跡と見られるレン ズ状の起伏が見られ(図 2(b)),また断面からSKD61に特有な白 い斑点状に観察される VC 微粒子が加工層では消失している(図 2(d)).このようなEB 照射による加工層に関しては,これまでに もSKD11へのレーザー加工¹⁰や大面積電子ビーム照射⁴および SKD61への電子ビーム照射⁵においても同様の加工層の形成が報 告されている.

これらの加工層の構成相を確認する為、電流条件を変え EB 照 射を行った各金型鋼試料に対し XRD 測定を行った結果を図 3 に 示す.まず SKD11 に関して、EB 照射前および1 mA 照射試料で はフェライト相(α相)の母相に僅かな MrC3が存在しているのに 対し、2mA 以上のEB 照射後では、すべてオーステナイト相(γ 相)に変化している.これは、上記の観察結果を考慮すると、EB

図 3. 電流値を変化させてEB照射した金型鋼試料のXRDプロファイル; (a) SKD11, (b) SKD61

照射により SKD11 が溶融する際, MrC3 も融解し,均一な融液と なり,それが急速凝固する過程において, Cr (12%)および C (1.5%) が母相中に過飽和に固溶することで,γ相が非平衡相として室温 で準安定化した状態であると考えられる.一方, SKD61 において は,照射前後で母相であるα相に変化は見られなかった.しかし ながら,電流値が 2mA 以上の場合,各ピークがブロードになり, これは表面観察からも示唆されるようにマルテンサイト変態によ り微細なα'相バリアントが生成した為であると考えられる.

EB 照射した金型鋼に対し,表面から深さ方向のビッカース硬さ を測定した結果を図 4に示す.ここでは,金型鋼と比較するため, 純鉄 (MEIF) に対する照射結果も示してある.まず,焼入れ前の SKD11 母材の硬さはおよそ 250HV を示したが,EB 照射により表 面から 50μ m付近より徐々に硬度が上昇し,表面付近では 500HV に達した.この硬化挙動はレーザー加工で確認された硬度上昇と 一致する¹⁰.また,上述の断面観察および,XRDの結果より,こ の硬度上昇はマルテンサイト変態によるものではなく,γ相中へ の Cr や C などの合金元素の固溶強化と組織微細化によるもので あると考えられる.一方,SKD61 に関しては、母相が 200HV 程 度であったのに対し、表面から 50μ m付近より急激に硬度が上昇 し、表面付近では 700HV に達している.ここでの硬度上昇は、

SEM 観察および XRD の結果より EB 照射後の冷却時におけるマ ルテンサイト変態による硬化が主な要因であると考えられる. こ のように EB 照射のみによっても、金型鋼の硬さは上昇すること がわかった. 純鉄は EB 照射により特に硬度が変化しなかったこ とから、EB 照射による加熱およびその後の急冷により、合金元素 が母相中に固溶し、組織が微細化することで硬度が上昇したと言 える. 特に SKD61 の場合に顕著な硬度上昇がみられたが、マルテ ンサイト変態に起因する表面起伏が生じる為、表面性状に大きな 影響を与えることが予想される. このため、これ以降のセラミッ クス粉末との溶融複合化形成の実験は、EB 照射により均一なγ相 の加工層が得られる SKD11 を用いて行うこととした.

図 4. EB 照射した SKD11, SKD61 および純鉄基板の深さ方向 の硬さ分布

図 5. セラミックス粉末を塗布しEB照射 (4mA) した SKD11基板の断面SEM像, (a) SiC 粉末(b) TiN 粉末

3.2. EB 照射によるセラミックス粉末と SKD11 母材との溶融複 合層の形成

次に、EB 照射により硬質セラミックス粉末をSKD11 表面に溶 融複合化する実験を行った.本研究では、複合化するセラミック ス材料として、炭化珪素(SiC)、窒化チタン(TiN)、超硬(WC) および超硬合金(WC-Co)の各粉末を用いた.

まず, SiC およびTiN 粒子を塗布し, EB 照射した試料について 断面観察をした結果を図 5 に示す. SiC に関しては、表面に僅か に付着している様子がみられるが、基材との複合化は生じていな い.また, TiN については、一部の粒子が基材内部に存在しており 表面付近にも部分的に複合化している様子が見られるが、コーデ ィングとしては充分ではない.この要因として、これらのセラミ ックス材料が絶縁性を有しかつ低密度のため、EB 照射時のチャー ジアップや熱衝撃により、ほとんどの粉末粒子が飛散しており、 複合層形成は得られなかったと考えられる.一方、導電性および 比較的高い比重を有する WC 粉末を用いて同様の実験を行ったと ころ、表面での残存量は増大したものの、今度は WC 粒子のみが 溶融し、下層への熱流を遮蔽したため、基材が溶融せず、ここで も溶融複合化は生じなかった.

次にCoをバインダーとして含むWC-Co粉末を使用した実験結 果を示す. SKD11 試料に対し,WC-Co粉末を塗布し EB 照射 (4mA)を施した試料の表面および断面の SEM 像を図 6 に示す.表 面観察から,明るいコントラストで示される WC が偏在している 様子が見られ,断面には加工層内にWCをリッチに含むコントラ ストの異なる領域がマーブル様に存在している.この白いマーブ ル模様を示す組織がWC-Coをどのように含んでいるかを確認す る為, EPMA により作成した元素マップを図 7 に示す. SEM 像

図 6. WC-Co 粉末を塗布し EB 照射(4mA)した SKD11 の(a)表面および(b)断面 SEM 像

に見られる加工層内の白い領域と対応するのは、WとCoであり、 C は加工層内に比較的均一に分散しており、顕著に対応していな いように見える.一方、この白い領域内ではFeやCrと言った母 材の元素濃度が低い傾向が見て取れる.また、加工層全体にCoの 成分が含まれており、Coがバインダーとして機能していることが 確認できた.さらに、このマーブル模様の界面はぼやけており、 はっきりとした析出物一母相界面を形成せず、濃度勾配を有する 固溶体を生成していると考えられる.

次に、SKD11 に対し WC-Co 粉末を塗布した場合と、塗布して いない場合の EB 照射後の XRD パターンを図 8 に示す. WC-Co 粉末を塗布後 EB 照射した試料では、WC だけでなく W2C が存在 していることがわかる. また、母材が EB 照射された際に生成す るγ相も僅かながら見られることから、EB 処理表面全体が WC、

図 8. EB照射のみ及び,WC-Co粉末を塗布しE 照射したSKD11試料表面のXRDプロファイル

Co および W₂C で覆われているのはなく,部分的に母材が露出し ていることが示唆され,上記観察結果と一致する.WC だけでな く,W₂C が存在していることから,W-C 系の状態図¹¹⁰より,EB 照射により WC が分解する温度(>2750°C)まで上昇したのち, さらにその W₂C が溶融し,すでに溶融している母材および Co と 融合し,それらが急速冷却時に固溶体として凝固したものと考え られる.通常,WC-Co の状態図¹⁰からは連続的な組成を有する 固溶体は形成されないと考えられるが,本研究で用いた EB 照射 条件では溶融状態からの急速冷却となるため,非平衡相として固 溶体が存在している可能性がある.また,2WC \rightarrow W₂C+C と分 解することにより余剰 C が存在していることが示唆され,上記 EPMA の結果において C が加工層全体に分布している状況を説明 できる.

図 9にWC-Co粉末を塗布後EB照射したSKD11試料の深さ方 向の硬度分布を示す.WC-Coの存在により図 4で示したEB照射 のみの結果と比較して表面付近(~20µm)での硬度が上昇し,最 高で1000HVに達した¹³.通常の超硬合金の硬度はWC粒径やバ インダー組成により1000~1800HV程度の値をもつことから,上 記硬度上昇の要因は,EB照射によりSKD11表面においてWC-Co

図 7. WC-Co粉末を塗布しEB照射したSKD11試料断面の面分析結果(元素マッピング)

と母材の溶融複合層が形成された為であると考えられる.また, WC-Coを含む複合層を有する試料において,硬度が傾斜分布して いる様子が見られるが,本実験で得られた複合層において WC-Co の面内分布の不均一性が大きいことから,深さ方向への傾斜組成 による硬度傾斜ではなく, WC-Co分布の不均一性を反映してい るものと考えられる.

図 9. SKDII 基板にセフミックス粉末を塗布し EB 照射し た試料における深さ方向の硬度分布

4. 結言

EB 照射により金型用工具鋼が受ける影響および, EB 照射により硬質セラミックス粒子を溶融コーティングする手法を検討したところ以下の知見を得た.

- (1) EB 照射のみを施した SKD11 の表面には、EB 照射により溶 融状態から急速凝固することにより微細な樹枝状組織が形 成され、CrやC等を過飽和に含んだオーステナイト(y)相 として存在する.このy相では、組織の微細化と固溶強化に より、硬度が 500HV 程度まで上昇した.
- (2) SKD61 を用いた場合でも、VC 析出物が消失した均一な加工 層が形成され、冷却時に生じたマルテンサイト変態により表 面硬度が 700HV に達した.
- (3) 硬質セラミックス粒子材料として, SiC および TiN を用いた 場合,塗布された粉末粒子のほとんどが EB 照射時に飛散し, 基材との複合層は形成されなかった.また,WC 粉末を用い た場合,粒子の飛散は抑制されたが,基材の溶融が妨げられ たため複合層形成は生じなかった.
- (4) WC-Co粉末を塗布しEB照射を行うことによりWC-Coと基 板母材との複合層が形成された.ただし、この複合層の形成 は不均一であり、母材表面を完全に被覆するには至らなかっ た.
- (5) 上記複合層が形成されたことで、表面付近 (≦20µm)の平 均硬度が 1000HV 程度に達した.

謝辞

本研究は公益財団法人 天田財団による一般研究開発助成(AF-

2012012)の援助を受け実施されたものです.ここに謝意を表しま す.また、本研究は陳中春教授(鳥取大学),音田哲彦准教授(鳥 取大学),上原一剛准教授(鳥取大学付属病院)との共同研究にて 行われました.電子ビーム加工機の利用に際しては多田電機㈱様 のご協力を賜りました.ここに記して御礼申し上げます.

参考文献

- 1) 田村 庸: 塑性と加工, 50巻, 582号, (2009), 592.
- 久保田邦親,小松原周吾,扇原孝志,鳴海雅稔,山岡美樹: 日立金属技報,21巻,(2005),45.
- 岡田 晃, 宇野義幸, 藪下法康, 植村賢介, P. Raharjo: 精 密工学会誌, 69 巻, 10 号, (2003), 1464.
- 岡田 晃, 宇野義幸, 仁科圭太, 植村賢介, P. Raharjo, 佐 野定男, 虞 戦波:精密工学会誌, 71 卷, 11 号, (2005), 1399.
- 5) 薩田寿隆: 熱処理, 52卷, 4号, (2012), 220.
- 化田良二, 岡田 晃, 宇野義幸, 郭 洪閣: 精密工学会誌, 76
 巻, 12 号, (2010), 1393.
- 7) M. Tokita : Mater. Sci. Forum, Vol. 423-425, (2003), 39.
- 8) Z.Z. Fang and O.O. Eso : Scripta Materialia, Vol. 52, (2005), 785.
- 9) 黒田聖治, 渡邊 誠: 高温学会誌, 36 巻, 6 号, 254(2010)
- 10) 田村武夫, 大久保 努:精密工学会誌, 66 巻, 11 号, (2000), 1797.
- A.S. Kurlov and A.I. Gusev : Inorganic Materials, Vol. 42, No. 2, (2006), 121.
- C.M. Fernandes and A.M.R. Senos: Int. J. Refractory Metals and Hard Mater., Vol. 29, (2011), 405.
- T. Akao, Y. Sakurai, T. Onda, K. Uehara, and Z.-C. Chen : Procedia Eng., Vol. 81, (2014), 1939.