無容器レーザプロセッシングを用いた急冷凝固装置の開発

宇宙航空研究開発機構 宇宙科学研究所 助教 岡田純平 (平成 24 年度一般研究開発助成 AF-2011213)

キーワード:無容器、過冷却液体、急冷凝固

1. 研究の目的と背景

液体の温度がその物質固有の融点以下に下が る現象を過冷却と呼ぶ。過冷却液体の中では固相 の核が生成消滅を繰り返している。融点からの温 度低下が大きければ、固相核の成長が容易になり、 その大きさが臨界サイズを超えたところで固体へ 相変態する。臨界サイズは熱力学的考察から数 nm と見積もられる。凝固過程には必ず結晶核の発生 とその成長が随伴するため、過冷却は、すべての 液体でみられる現象であると言える。しかし、普 通の坩堝(るつぼ)を用いる凝固では、坩堝の壁 との接触や坩堝から混入した異物を媒介とした不 均一核発生が容易に起きるため、通常は、さほど 大きな過冷却を起こすことなく、平衡状態図から 想定される通りの相が生成される。これに対して、 本研究では、以下に述べる容器を用いない方法、 すなわち、静電的に液体試料を真空中に浮游させ る方法を用いて、融点以下数百度におよぶ大きな 過冷却状態の実現を試み、この過冷却状態を急冷 凍結する装置を開発することにより、通常では得 られないような新しい相や、新しい機能を持つ材 料の創製を目指すことを目的とする。

2. 実験方法

2.1 静電浮遊法

静電浮遊法(Electrostatic Levitation Technique: ESL)は、静電力を用いて試料を浮遊さ せる。図1に示すように、帯電した試料に静電場 をかけ重力と釣り合わせることによって、試料を2 枚の電極間の任意の位置に浮遊できる[1]。浮遊さ せた試料をレーザー加熱することにより溶解する。 標準的な電極間距離は約10 mm、試料サイズは約 2 mm である。電極間には10~20kVの電圧が印加 される。放電を防ぐためチャンバー内は真空雰囲

図1 静電浮遊溶解装置の概略

気(10⁻⁵Pa)に保たれる。2台の CCD 位置検出器を 用いて試料の3次元的な位置を測定する。測定し た位置情報を用いて PID 制御で電極間の電圧を調 整し、試料位置を±10μm以内の精度で安定化させ る。温度測定は放射温度計を用いる。

静電浮遊法では、試料が帯電すれば金属・絶縁 体を問わず浮遊できる。紫外光の照射により試料 を正に帯電させる。加熱レーザーの出力を変える ことで試料温度を調整する。レーザーの出力を上 げれば、液体タングステン(3700K)の熱物性測定 も可能となる。図2は静電浮遊により保持した金 属球を示す。

図 2 静電浮遊法を用いて真空中で浮 遊させた金属球

2.2 液体急冷機構の開発

図 3 に示す液体急冷機構を作製し、静電浮遊熔 解装置組み込んだ。試料の急冷手順は以下の通り である。

図3 急冷機構の概略

- ① 試料に加熱レーザを照射し、試料を融解する。 融点より100K以上高温で保持し、試料を完全 に融解する。その後、レーザー出力を弱め、液 体の温度を融点以下の過冷状態まで下げる。
- ② 試料の温度が目標とする過冷却度に達した段階で、試料浮遊のために印可している電圧を切断する。試料は、下電極中央の穴(φ 4mm)を通り、回転銅円盤へ落下する。円盤(φ 200mm)の回転速度は 500~4000rpm である。
- ③ 試料は遠心力により回転する銅円盤の上を広がり、フィルム状に急冷される。

図4に、液体急冷機構を備えた静電浮遊熔解装置 の外観を示す。回転銅円盤に接触して急冷された

図4 液体急冷装置の外観

フィルム状の試料が、飛行管(水平方向に延びる

円筒)の中に落下し回収される。

2.3 急冷能力のテスト

液体急冷装置の冷却能力を確認するために、 Fe₇₆S₉B₁₅ 合金の急冷実験を行った。この合金は、 合金液体を急冷するために一般に用いられる、石 英管中で合金を溶融し回転銅円盤に吹き付ける方 式を用いる液体急冷装置でアモルファスが得られ る合金系である。図5に示すように、融点より100K 上のFe₇₆S₉B₁₅合金液体を回転速度2000rpmの回転 銅円盤上に落下させたところ、アモルファスが得 られた。これにより、本研究で作製した静電浮遊 法を用いる液体急冷装置が十分な冷却能力を用い る事を確認することができた。

図 5 Fe76Si9B5 急冷試料の TEM 像

3. 結果及び考察

3.1 過冷却ボロンの急冷実験

過冷却ボロンの液体急冷実験について述べる。試料は超高純度ボロン(純度 99.9999%)を約2mm φ の球状に整形したものを用いた。試料を静電浮遊 熔解装置内で浮遊させ、100Wの加熱レーザーを2 方向から照射する(合計出力200W)ことにより、 試料を溶融させる。溶融後、加熱レーザーの出力 を切断すると、図6に示すように冷却温度曲線の ように試料は冷却される。過冷却液体 B の温度が 約2300Kまで下がった時点で、試料を浮遊させる ために印可している電圧を遮断し、試料を回転銅 円盤上(回転速度1600rpm)に落下させ、過冷却 液体 B を急冷した。

図 7 に急冷ボロンの粉末 X 線回折測定結果を示 す。得られた回折ピークは、残念ながら全て既知 のβ-B 結晶由来のピークであった。しかし、急冷

20/。 図7 急冷Bの粉末X線回折測定結果

図8 急冷BのSEM 観察写真

実験では非平衡相が局所的に形成されることが多 いため、走査型電子顕微鏡(SEM)を用いて、得 られた急冷ボロン試料を観察した(図 8)。SEM 写真の左右の幅が約200µmである。興味深い点は、 図 8(a)の中央部分に示すように、白い糸上の模様 が見られることである。組成分析(EDX)を行っ たところ、この領域に B 以外の物質は存在しなか った。多成分系の SEM 観察によって、類似の縞模 様が観察されることはあるが、単一成分系では珍 しい。この領域に15kVの電子線を2時間照射し続 けたところ、(b)に示すように、糸状の模様は消滅 した。糸状の模様が電子線照射によって消滅した ことは、この模様が B の未知の準安定相と関連す る可能性がある。糸状の模様の詳細について明ら かにするためには、顕微ラマン分光測定など様々 な角度から調べる必要があり、今後の課題である。

3.2 過冷却シリコンの急冷実験

よく知られているように、固体 Si は代表的な半 導体であるが、溶けると金属的性質をもつように なる。つまり、液体 Si は金属である。最近の理論 研究によれば、液体 Si の温度を融点(1683K)よ り 451K 低い 1232Kまで下げると、高温の液体 Si とは性質の全く異なる未知の準安定の液体相が出 現するという興味深い予測がなされた[2]。通常、 高温の液体金属中では、原子は激しく運動し、原 子間の結合は均質であると考えられるが、この理 論によれば、液体 Si の温度を 1232Kまで下げると 過冷却状態の液体 Si 中に新たに半導体の領域が出 現し、金属領域と半導体領域が共存するという、

図 9 過冷却シリコン中に固相が生成した瞬間の 写真

これまでに考えられなかった特異な液体状態が現れる。過冷却液体 Si を急冷凍結することができれば、金属・半導体領域が共存する準安定の固体 Si を得られる可能性がある。

図9に、過冷却液体シリコン(温度1450K)中に固 相が生成した瞬間を、高速度カメラで撮影した写 真を示す。球状の試料の直径は2mmであり、超高 純度Si(純度99.99999999%)を用いた。シリコンは、 固体の放射率が液体の放射率よりも大きいので、 図9中において白い部分が固相、暗い部分が液相 である。試料表面に一様に固相が生成されている。

図 10 過冷却 Si の急冷試料の SEM 観察写 真。スケールは写真の横幅が 80 µ m。入射X 線のエネルギーは 25kV、倍率1500倍。

図 10 に、過冷却液体 Si の急冷試料の SEM 観察 写真を示す。1µm 程度の微細な組織が形成されて いる。この領域の組成分析では Si 以外の元素は検 出されなかった。したがって、この微細な組織は Si 由来と考えられる。液体 Si の急冷実験により、 図 10 のような微細組織が観察されたのは、我々が 知る限り初めてである。図 8 のボロン試料の場合 と同様に、TEM 観察など様々な測定を行うことに より微細組織の本質を解明することが今後の課題 である。

4. まとめ

過冷却液体を急冷凍結し、新しい準安定相を作る ために、静電浮遊溶解法を用いる液体急冷装置を 作製した。浮遊法を用いる事により、反応性に富 み、これまで保持容器の存在しなかった高温液体 を安定に保持し、さらに、融点以下の過冷却状態 を実現する事が可能になった。過冷却液体 B およ び Si の急冷実験により得られた試料には、通常の 凝固では観察されない興味深い微細組織の存在が 確認された。これまで高温の過冷却液体の急冷凝 固実験は殆ど行われておらず、新しい準安定相が 発見される可能性がある。本研究によって作製し た無容器液体急冷装置を用いて、今後の研究を展 開させる予定である。

謝辞

本研究は、公益財団法人天田財団平成23年度一般 研究開発助成により実施しました。同財団に深く 感謝致します。また本研究は、石川毅彦教授(JAXA 宇宙研)、横山嘉彦准教授(東北大金研)、木村 薫教授(東大新領域)、七尾進名誉教授(東大生 研)との共同研究として行われました。

参考文献

[1] W.-K. Rhim, S.-K. Chung, D. Barber, K.-F. Man, G.
Gutt, A. A. Rulison and R. E. Spjut, *Rev. Sci. Instrum.*64, 2961 (1993)

[2] P. Ganesh and M. Widom, *Phys. Rev. Lett.* 102, 075701 (2009)