高速スキャンCWレーザによるナノトレンチ構造の創製

東京工業大学·大学院総合理工学研究科 物質科学創造専攻

教授 吉本 護

(平成23年度 一般研究開発助成 AF-2011204)

キーワード: CWレーザ, 高速スキャン, ナノ周期構造

1. 緒言

ナノスケールで微細構造を作製する技術には、 走査型 プローブ顕微鏡や自己組織化現象を利用し, 原子・分子 を積み上げてナノ構造を構築していくボトムアップ的な 手法と、電子ビームリソグラフィーやドライエッチング を使ってマクロな材料からナノ構造を作り込んでゆくト ップダウン的な手法の二つがある¹⁾.半導体加工技術の 飛躍的進歩により、マイクロマシーンなどの微細構造の 作製がされてきた. 直径100μm程度のモータなどの作製 はトップダウン式であるが、これらの微細加工技術は主 に小面積・平面を対象としており、被加工材料にも何か と制限がつけられることが多い.一方,自然界でも多く の微細構造が存在している. クジャクの羽の輝きやモル フォ蝶の鮮やかな色は、色素による発色ではなく、表面 の微細構造に起因する「構造色」である.また、蓮の葉 が水を弾くのも、微細構造による撥水性機能の発現であ ろ.

トップダウン的手法の一つであるレーザを使った切断 や穴あけ加工は,通常大気中で行われ、高度な清浄度は 要求されない.また大面積一括の微細加工技術として近 年注目されているナノインプリント法では、軟化特性な どの材料機能による制約も多いが²⁾、レーザ加工は,そ れら制約は少ない.レーザは加工プロセスとしての穴あ けや材料切断以外にも,製膜や熱的アニールの励起源と しても用いられている.レーザを使う製膜プロセスとし てはパルスレーザ蒸着法 (PLD法) があり,ナノレベル制 御の製膜を可能にしている³⁻⁵⁾.

我々はこれまでレーザによるシリコン半導体表面ア ニール処理の最適化実験を行っていた過程で偶然,レー ザアニールの光誘起による周期的ナノ構造の自己組織化 現象を見出した⁶⁾.その規則正しい「ナノかたち」から は、構造色による「着色」も観察された.構造色は可視 光に近いスケールの周期構造による光の干渉に起因し, 構造が壊れない限り「色落ち」しない.本研究での加工 技術は、フォトリソフラフィ等のトップダウン的なもの とは違い,ボトムアップ的な要素も加味されたナノ表面 プロセスである.そこで、本研究では2つの波長の違うCW (連続波)レーザを材料表面に高速スキャン(走査)し て照射することにより,自己組織化的にナノ周期構造を 表面形成させる技術を開発することを目的として,種々 の条件下でのレーザ照射実験を行った.

2. 実験方法

2.1 レーザ照射システム

本研究で用いたレーザ照射システムは、スイッチング 素子等の裏面活性化のためのレーザアニール装置として 開発されたものを適用した.レーザアニールではレーザ の侵入する深さ程度でのアニール効果が期待される.ま た、その侵入長は用いるレーザの波長により変化する. 図1に2つの波長レーザスキャン装置の模式図を示した. 例えば、本システムで用いた近赤外線(797 nm)と可視 光(532 nm)の2波長のレーザのシリコン基板への侵入

図1. 高速走査型 2 波長 CW レーザ照射システム概略図. 2 つのレーザ(近赤外および可視光) が同軸でターゲット表面を毎分300mの速度で走 査する(最大走査速度;900 m/min.).

長は、それぞれ、1 μmと10 μm程度である.2つのレー ザの出力の調整により、アニール効果の中心の深さを制 御できる.ナノ周期構造を形成する本システムでは、試 料のスキャン速度は分速300mと非常に高速である。可視 光と近赤外レーザには、それぞれ、YV04レーザと半導体 レーザを用いた.表1に示すように,近赤外線レーザ出 力を一定として,可視光レーザ出力のみを変化させた. ターゲットには加速電圧200keVでリンを1x10¹³/cm² 注入 したシリコン基板を用いた.ターゲットへのレーザ照射 は空気中で行い、照射後のターゲット表面は原子間力顕 微鏡(AFM)と走査型電子顕微鏡(SEM)を用いて観察した.

表 1. レーザ照射条件

レーザ	可視光	近赤外光
波長	532 nm	797 nm
スキャン速度	MAX. 900 m/min.	
照射エネルギー	$0 - 36 \text{ J/cm}^2$	32 J/cm^2

2.2 有限要素法によるレーザ照射時の熱伝導評価

レーザのスキャン照射に伴うターゲット基板の温度上 昇を見積るため、有限要素法によるシミュレーションを 行った.有限要素法には、三次元にも対応したオープン ソースで公開されているFreeFEM3Dを用いている.合計8 コアのXeonプロセッサー上で64ビット化してコンパイル した実行ファイルを用いている.用いた三次元熱伝導方 程式は、

$$\rho \, c_{\rm p}(T) \, \frac{\partial T}{\partial t} - \nabla \left(k(T) \nabla T \right) = Q(t)$$

で示される.ここで,ρはターゲット密度, ΦとTは温度 依存の比熱とターゲットの絶対温度である. *k*(T)は温度 依存熱伝導率であり, Qtターゲットに流入するエネルギ ーであり,2波長のレーザから供給される総熱量である. 時間依存の熱量Q(t)は次式で示すことができる.

$$Q(t) = (1 - R_{\rm g}) \alpha_{\rm g} I_{\rm g}(t) + (1 - R_{\rm ir}) \alpha_{\rm ir} I_{\rm ir}(t)$$

ここで、I(t)はスキャン速度に応じ移動するレーザ強度 分布であり、Rはレーザの反射率である.gとirはそれぞ れ可視光(Green)と近赤外光(InfraRed)レーザを示す.温 度依存比熱と熱伝導率は一般的な次式を用いた⁷⁾.

$$\begin{split} k(T) &= 0.235 + 4.45 \, e^{-T/247} \\ c_{\rm p} &= 0.81 + 1.3 \times 10^{-4} \, T - 1.26 \times 10^4 \, T^{-2} \end{split}$$

融点での潜熱Lf(latent heat of fusion)を考慮するため, 融点(Tm)を用いた潜熱を次式のようにガウシアン分布で 表した.

$$L_{\rm f} = \frac{1}{\sqrt{\pi} \,\delta T} exp\left(\frac{-(T-T_{\rm m})^{\,0.5}}{\delta T^{\,0.5}}\right)$$

ターゲットは長さ200 μ m,幅120 μ m,厚さ30 μ mとし,照 射側のみメッシュを細密(0.05 μ m)に取り裏面は粗くした.時間分解は1 μ 秒として計算を行った.

3. 結果及び考察

3.1 表面ナノ構造

2波長CWレーザスキャンにより形成したシリコン基板 上の表面ナノ周期構造を図2に示した.フェムト秒レー ザで作製されているナノ周期構造は繊維状構造⁸⁾である が、CWレーザによるナノ構造は凹凸を示し、平坦な底を 持つトレンチ構造となっている.フェムト秒レーザによ るナノ周期構造は、レーザの入射角により変化すること が知られているが、CWレーザによるナノ構造周期はレー

図2.2波長の CW レーザ高速スキャン照射に より自己組織的に形成されたナノ周期構造の SEM 像.約40µmのピッチ間隔で整然と配列し た線状トレンチパターンが観察される.

ザ出力で制御可能である.また、ナノ周期構造のトレ

図3. レーザ照射で形成されたナノ構造周期長 (□) とトレンチ高さ(○) の可視光レーザエ ネルギー密度に対する相関図. 可視光(523nm) レーザ密度に依存して,周期長が 500nm から 800nm の範囲で変化している.

図4.3次元有限要素法を用いて得られた,種々の パワーのCWレーザ照射時のSi基板表面での溶融領 域のシミュレーション結果.横軸は、レーザ照射点 の中心からの距離を示す.ナノ周期構造は溶融領域 内に形成された.

ンチの高さもレーザ出力により変化することが分かった. また図3には、ナノ構造周期長(□)とトレンチ高さ(○) の照射レーザエネルギー密度との相関を示した. 近赤外 光レーザの出力は一定として、可視光レーザの出力のみ を24から36 J/cm² まで変化させている. 図3からも分 かるように、レーザ出力による構造周期の変化は350 nm から800 nm程度であり、これは用いている2つのレーザ の波長である532 nmと797 nmに対応していると考えられ る.

次に有限要素法を用いてレーザ照射による基板温度の 変化を評価した.スキャン速度を毎分300mと一定にし, 実験と同じく可視光レーザのエネルギー出力を変えたシ ミュレーションにより,ターゲットの一部は溶融してい ることが分かった.

図4には可視光レーザの中心からの距離におけるレー ザ密度を示してある(破線).また、有限要素法により得 られたターゲットの溶ける範囲(melting area)を実線で 示してある.レーザ光源の出力が増えると溶融範囲も広 がっていることがわかる.更に太い実線領域では、実験 で得られたナノ周期構造の成長した範囲である.この図 から、溶融範囲の一部でナノ周期構造が成長しているこ とが分かる.更に時間依存温度上昇の解析により、ナノ 周期構造の成長には、溶融時間に5μ秒から6μ秒のしき い値があることが示唆された.

3.2 ナノ周期構造による表面機能

本研究での2波長CWレーザスキャン法では、大気中で のラフな位置精度でも周期構造の形成が可能であった. 図5はシリコン基板上のナノ周期構造による着色(構造 色)の例であるが、シリコン試料板はパソコンの冷却ファ ンに貼付けて回しているだけの簡易なシステムである. 光源には白色光を用いているため、ナノ構造周期による 干渉で黄色から青、緑色と着色されている.冷却ファン の回転でもナノ周期構造が形成され,高さ方向での高い 精度も必要としないレーザ加工手法であることがわかっ た.

図5. CW レーザ照射により Si 基板上に形成された 周期的ナノトレンチ構造に由来する基板表面の構 造発色.レーザ照射時に基板回転させることによ り,同心円状のナノトレンチ構造が得られた.

次に、表面機能として撥水性の評価を行った. 接触角 と固体面と液滴のなす角であり、トマス・ヤングの式で 現される. 表面に凸凹があるとウェンゼルの式やカシー の式^{9、10)} で近似できるとされている. シリコンは接触 角が90度以下であるので、微細構造により接触角は小さ くなることが予想される. 実際測定すると、シリコン基 板上に形成したナノ周期構造上での接触角はシリコン基 板に対して10度から20度小さい値になった.

4. 結論

本研究により、2つの異なる波長のCWレーザを同時照 射する「2波長CWレーザの高速スキャン」により、シリ コン基板表面上にナノ周期構造が形成されることを見出 した.本手法で形成されるナノ周期構造は、フェムト秒 で作製される繊維状周期構造とは異なり、平らな底を持 つナノトレンチ構造を示していた.また、その構造周期 は2つのレーザの波長域(赤外域の800nmから可視域の 500nm)で制御可能であることがわかった.今後の展開と して、紫外光レーザを用いれば、より幅広いナノ構造周 期の制御可能性が考えられ、さらにセラミックスなど 種々の材料にも拡張できることが期待される.

謝辞 辞

本研究は公益財団法人天田財団の一般研究開発助成を

受けて実施したものであり,ここに感謝の意を表します. また、レーザ照射実験にあたり多大なご協力を頂いた神 奈川県産業技術センターの金子 智博士に謝意を表しま す.

参考文献

- 1)「第5版実験化学講座,第28巻 ナノテクノロジー の化学」、日本化学会編(丸善),165 (2005).
- 2)G. Tan, N. Inoue, T. Funabasama, M. Mita, N. Okuda, J. Mori, K. Koyama, S. Kaneko, M. Nakagawa, A. Matsuda and M. Yoshimoto: Appl. Phys. Exp., 7 (2014) 055202.
- S. Kaneko, K. Akiyama, Y. Shimizu, H. Yuasa, Y. Hirabayashi, S. Ohya, K. Saito, H. Funakubo, and M. Yoshimoto: J. Appl. Phys., 97 (2005)103904.

- 4) S. Kaneko, K. Akiyama, H. Funakubo, and M. Yoshimoto: Phys. Rev. B, 74 (2006) 054503.
- M. Yoshimoto, R. Yamauchi, D. Shiojiri, G. Tan, S. Kaneko and A. Matsuda: J. Ceram. Soc. Japan, 121 (2013) 1.
- S. Kaneko, T. Ito, K. Akiyama, Y. Hirabayashi,
 A. Matsuno, T. Nire, H. Funakubo, and M. Yoshimoto: Nanotechnology, 22 (2011) 175307.
- 7) S. de Unamuno and E. Fogarassy, Appl. Sur. Sci.,36 (1989) 1.
- 8) H. Chen, Huang, F. Zhao, R. Qi, R. Li, Z. Xu, X. He, J. Zhang and H. Kuroda, Phys. Rev. B, 72 (2005) 125429.
- 9) R. Wenzel, J. Phys. Collid. Chem., 53 (1949)1466.
- 1 0) A. Cassie, Faraday Soc., **3** (1948) 11.