ピコ秒レーザー加工による光学素子モールド成形用 セラミック型材化技術の開発

芝浦工業大学 デザイン工学部 教授 相澤 龍彦 (平成 23 年度一般研究開発助成 AF-2011202)

キーワード:ピコ秒レーザー加工、セラミックス、グラシーカーボン、光学素子、モールド型、モールドプレス

1. 研究の目的と背景

レーザー加工技術は、生産技術の一手段として定着しつ つあるが、なお CO2 レーザー・エキシマレーザーあるいは μ s・n s オーダーの固体レーザーが主流である. すでに 文献 1)で評価しているように、この種のレーザーは高エ ネルギー利用には適しているが、加工時の熱影響が大きく、 微小孔加工においてすら,粉末のデポジットあるいは孔ま わりの変形はさけられない. ここに, 熱影響はほとんどな い. ノンサーマルあるいはコールドレーザー加工の必要性 がある. ピコ秒レーザーに代表される極短波長レーザーで は、すべての加工工程がアブレーションのみで生じ、アブ レーション時の物質流動とレーザー光とが空間・時間軸上 で干渉しないために、上記の熱影響はほとんど発生しない、 加えて、光路制御による多様な加工を実施できるため、通 常では不可能な微細加工や多次元加工が可能となる. さら に,光の空間干渉の利用,位相差制御などを活用すること で、機械的な除去加工では想定すらできない加工方法を開 発することができる²⁻⁴⁾.

DOE (Diffractive Optical Element)に代表される光学素 子は、それぞれの素子機能・回折効果に応じて、その表面 に微細パターンを転写形成させる.また共鳴構造・半波長 構造の光学素子では、光の空間干渉を利用するため3次元 微細パターン構造を作成する必要がある.これらは、形状 急峻度・パターンユニットの高アスペクト比など、従来の 切削加工・熱レーザー加工では実現はほとんど不可能であ り、ここにもピコ秒あるいはフェムト秒レーザー加工の必 要性がある.

ここでは、光学素子モールドプレス成形用のセラミック 金型への、自在なマイクロテクスチュア形成を行う多次元 レーザー加工技術の確立を最終目標に、まずセラミック材 へのレーザー加工実験を行い、その寸法精度を詳細に検討 する.特に2次元テクスチュアの配列性について調査し、 その精度を考察する。その上で、モールド成形用型材とし て、グラッシーカーボンを選択し、レーザー加工によるテ クスチュア形成とモールドプレスによる転写成形実験を 行い、レーザー加工による型材作製の有用性を実証する。 さらにピコ秒レーザー加工における不安定性現象とその 解決法についても言及し、これからの短波長レーザー加工 のあるべき方向性を示唆する.

2. 実験方法

2・1 レーザー加エシステム

精密機械切削と同様に,精密な位置制御を基本とするレ ーザー加工システムでは,グラナイト製の定磐上に加工シ ステムを構築する.(㈱リプスワークスと共同で開発したピ コ秒レーザー加工システムの外観を示す.

図1 開発したレーザー加工システムの外観.

採用したレーザーは、基本波出力が50W,パルスエネ ルギーが1パルスあたり250µJで、実測パルス幅が8 -10ps である.この発振条件をベースに、事前のマイク ロパターン加工試験結果などを考慮し、後述するように試 料の高精度位置制御、レーザービーム制御に加えて、ビー ム回転機構を搭載することで、光学系を含むシステムを構 築した.そのダイヤグラムを図2にまとめて示す.

図2 当該レーザー加工装置の光学系システム.

2次高調波(SHG)への変換装置,ビーム拡大装置を常備 するとともに,ビーム回転制御機構を設置することで,エ ネルギー分布の少ない高品位のレーザーパルスを,スキャ ナーを介して,被加工物に照射できる.加えて,レーザー 光の入射角度を制御することで,高アスペクト比を有する パターンの形成にも対応する.後述するように,高品質の レーザービームを照射するためには,レーザー加工パスと ともにビーム品質の制御が不可欠となる.最後に,図2 に示したビームラインでのレーザーパワーの伝送率を求 める.図2より推察されるように,各ライン間・後述する ビーム・ローテータおよび集光レンズなどにより,レーザ ーパワーロスが生じる.パワーメータで測定すると,基本 波で21%,SHGで39%のロスが生じる.基本波でのロス がより小さいのは,図2におけるビーム反射コーティング などが,基本波に準じて設計されているためと考えている.

2・2 レーザービーム制御

多次元マイクロパターン転写形成加工を行うには、後述 する加工パスの制御性に加えて、レーザービームの高品位 化をはかる必要がある.ここでは、光学部品を搭載したス ピンドルをサーボモータで高速回転させる、レーザービー ムローテータを開発した.この装置の動作メカニズムを図 3 に示す。

図3 ビームローテーションによる制御例.

同図において、回転中に任意の角度、任意の回転半径に調整することで、熱影響部を最小にとどめ、高精度の加工を 実現する.実際、低速領域(停止状態)から高速状態(5000 rpm)まで変化させた場合、静止時ならびに共振周波数時 を除き、最大振幅は 0.35 µ m以下であり、加工状態を乱 さずに、レーザービームのみを制御できることを実証した. その上で、静止時との加工状態を比較すると、静止時には 明瞭な熱影響部が観察されるのに対して、回転時にはほと んどその領域が検出できないことがわかった.

2・3 レーザー加工パスデザイン

多次元マイクロパターン形成加工パスを設計する場合 には、加工ステージの位置制御系ならびに回転制御系につ いて最適化を行う必要がある.リニアモータ駆動の X-Y ステージでは、フルストローク(600mm x 450mm)に おいて、実測した繰り返し位置決め誤差は 0.5μ m以下で あった.特に光学系に関しては、無収差光学レンズとして、 屈折率分布を内部に有しているクラディウムレンズを用 い、後述する1次元マイクロパターン形成実験で、高精度 化のための収差補正に利用した.

上記の制御系を基礎として,図4に示す加工パスを標準 として採用した。この加工パスでの精度評価を1次元マイ クロパターン転写形成実験で行い,それを2次元マイクロ パターン転写形成実験に応用した.

図4 標準的なレーザー加工パスデザイン.

2・4 レーザー加工環境

超精密機械切削加工と同様に,除去加工時のレーザー加 工環境に影響を与える,除去加工時の温度環境効果につい て述べる.一般に,環境温度が1℃変化すると,1µmの 形状変化が生じると考えられる.実際の加工環境では,装 置剛性の基準である定盤を中心とした加工雰囲気の温度 変化が問題となる.

ここでは、長期的な安定性を実証するため、装置の各所 に温度センサーを取り付け、清浄装置稼動下での温度履歴 を測定した.加工ステージ近傍では、センサーの許容誤差 内にとどまり、ほぼ 0.2-0.3℃以内の変動であった. 24 時間の連続運転時におけるすべての温度センサーの最大 変動幅は最大 1℃であり、加工環境下での温度変動の影響 は十分に除去できたと考えている.

3. 実験結果

ここでは、各種セラミック材料を対象に、円孔レーザー 切削加工を行い、その精度に関して種々の角度から検討を 行う.特にマイクロパターン形成で重要な繰り返し加工精 度について考察し、本レーザー加工の基礎的データとした. さらに、グラッシーカーボンへの光学素子用マイクロパタ ーンへの形成と光学プラスチック材への転写成形により、 本技術が型材形成技術として有用であることを実証する.

3・1 孔加工における高精度転写形成

レーザービーム形状が真円であれば、収差は生じないが、 実際のレーザーには P 波と S 波の成分があるため、それ ぞれの焦点位置が異なることによる、照射領域形状誤差が 生じる.このレーザー発振装置固有の非点収差は、加工ま での伝送光学系、特に反射ミラーの面精度により制御でき る.実際、反射ミラーの面精度が相対的に低下すると、焦 点位置を挟んで上下位置で照射領域形状が、X 方向と Y 方向で変化する.反射ミラーの面精度を向上させると、基 本波・SHG ともに形状誤差はほとんど観察されなくなる. すなわち、発信器から加工端までの光学補正により、レー ザービームの高品位化を行い、形状制御性が促進されるこ とがわかった.この点を実証するために、反射ミラー面精 度の異なる条件で、高純度アルミナの大気中レーザー加工 実験を行った.

図5 通常の反射ミラー面精度における加工例.

図6 面性状を向上させた反射ミラーを用いた 1 次元パ ターン加工例.

図5に示すように、形状不整の影響を受けやすい、孔周 囲が激しい凹凸状となり、アブレーションに伴う堆積物も 観察される.一方、反射ミラー面性状を向上させると、図 6に示すように、同一径の孔形状において、孔周囲形状も 孔内面も清浄化され、良好な細孔加工を行えることがわか る.

3・2 孔加工における高品質形状創成

レーザービーム入射側では,最初に被加工物質へのエネ ルギー投入する際に生じるアブレーション時のプルーム の拡がりの影響を受け,図7に示すような寸法不整(以下, ダレ)を生じる.

図7 被加工材入射側の寸法不整の例.

図8 犠牲コーティング法による1次元パターン形成.

ここでは、1つの対策として犠牲コーティング法を用い、 犠牲フィルムを介してマイクロパターン化することで、入 射側の寸法不整を解消する方法を提案する.図7と同様に、 SiCサンプルを用い、犠牲コーティング法による1次元パ ターン転写形成を行った.図8に示すように、ダレは解消 し、形状寸法ともに不整のほとんどない孔加工なども実現 でき、従来の機械的除去加工と同等あるいはそれ以上の精 度で転写形成できることがわかる.

3・3種々のセラミックスのレーザー加工性

レーザー加工が被加工材のアブレーションにより進行 するため、材質により加工条件は変化する.ここでは、こ れまでと同様に、 $\Phi 50 \mu m 0$ 1 次元加工を行った場合の レーザー出力の時間変化をパラメータに、4 つのセラミッ ク材(アルミナ (Al2O3)、窒化アルミ (AlN)、炭化ケイ 素 (SiC)、マシナブル・セラミックス)のレーザー加工性 を比較した.この中で、マシナブル・セラミックスは複合 セラミックスであり, 粒界周辺がアブレーションしやすい と考えられるため, ほかのセラミックスと比較して, 低出 力でのレーザー加工が可能であると推察される.

図9に示すように、ガラス系・複合セラミックス系<共 有結合系<イオン結合系の順に、投入パワーも加工時間も 長くなることがわかる.これには、セラミック材への光エ ネルギーの吸収、アブレーション時におけるプルーム形成 能などが反映しており、今後、計装化した加工装置を用い て、実時間での評価を行う考えである.すなわち、アブレ ーションとして蒸発していく物質が材質により大きく変 化するため、それを直接計測することで、レーザー加工状 態を診断することが求められる.

3·4 2次元配列制御性

円孔などの1次元パターンユニットを2次元配列する ことではじめて、マイクロパターン転写形成となる.した がって、その配列制御性が最終的なマイクロパターンの精 度を決定する.ここでは、マシナブル・セラミックス(板 厚:0.25mm)を用い、Φ30μmの孔をパターンユニット として、2次元配列パターニング加工を行った.図10に、 パターニングの加工パス数に対して計測した、形状誤差の 変化を示す.

図10 2次元配列における各種誤差の変動.

例えば、真円度に関しては、その誤差は約1μm程度で あり、2次元配列時の変動はほとんど見られない。その他 の寸法変動も0.5μm以下であり、パターンユニットの高 精度を担保しておけば、2次元配列時の誤差拡大はほぼゼ ロであると考えてよい。

3・5 セラミック型材作製

光学素子のモールド成形では、型への2次元あるいは3 次元マイクロパターン形成が求められる.ここでは、その 第1段階として、深さ方向の加工パターン制御を行い、か つ2次元配列を行う.具体的には、グラッシー・カーボン 型材(GC材)へのV字マイクログルーブ形成を対象にし て、ピコ秒レーザー加工特性について考察する.GC材は 前述したように、高温耐熱性に優れているが脆性材であり、 機械的な除去加工はきわめて困難である.このため、この 種の炭素系素材を型材として利用するためには、当該レー ザー加工技術は不可欠である.

図 11 GC材上に転写形成した V 字マイクログルーブパ ターン.

図 11 に、GC 材上に V 字形状グルーブのパターンユニ ットを形成したサンプルを示す. 挿入図はG C型材全体の 光学顕微鏡像であり、上下の平滑面の間にレーザー加工を 施した. 設計パターンユニットは、V 字グルーブ幅が 10 μ m、深さ 10 μ m、ピッチが 35 μ mであり、幅・ピッチ ともに精度良く加工できていることがわかる.より詳細に 分析するために、レーザー反射プロファイル計(三鷹光器 製・NP-3S)を用いて深さ分布を求めた.

図 12 マイクロパターニングの深さ方向分布.

図 12 において,深さ方向の誤差は,目標深さに対して, 最大で+2 μ m、最小で-1 μ mの範囲で加工されている. また形状は目標のV字形状を保持している.

次に、レーザー出力、加工パスは一定で、目標の加工深 さを変化させてマイクロパターニングを行い、設計加工深 さと実測のV字成形グルーブの深さとを比較した. 図 13 に示すように、平均実測深さはほぼ目標値と一致するが、 アスペクト比(V 字グルーブ深さを V 字グルーブ幅で除 した値)を大きくするにつれて,実測深さが目標値より小 さくなる.これは,加工制御できる範囲での到達深さは, ほぼレーザー出力で決定されることを示唆している.した がって,前述のようなビーム制御とともに,レーザー出力 制御も行うことで,高アスペクト比でのマイクロパターン 形成が可能となる.微小ポンチによる精密せん断プレスで は,アスペクト比が 1.0 程度であることと比較すると,レ ーザー加工によるマイクロパターン形成技術により,高ア スペクト比のマイクロ加工が実施できることがわかる.

図 13 アスペクト比の増加に伴う目標深さと実測深さとの関係.

3・6 光学プラスチック材へのモールドプレス成形

光学素子のモールド成形では、型への2次元あるいは3 次元マイクロパターン形成が求められる.ここでは、レー ザー加工により2次元パターン形成したGC材を型材とし て利用し、そのパターンを光学プラスチック材に転写成形 した.

GC 材は室温では脆性材料であるが,優れた高温強度を 有しており,本実験で用いる光学プラスチック材以外にも, 酸化物系ガラス材などへのマイクロパターン転写成形用 の型材として利用できる.特に,従来の金属型材ではモー ルドプレス成形が困難な,成形温度が700℃を超える温度 領域での形材として有望である.

このモールドプレス成形型材としての可能性を実証す るために,研究者が開発してきた CNC 制御モールドプレ ス成形装置ならびに成形方法 ⁵⁰をベースとし,新たに開発 した真空モールドプレス成形装置を用いて,転写成形実験 を行った.

実験では、PMMA (Poly-Methyl-Meta-Acrylate) を光 学プラスチック素材として用い、図 11、図 12 で示した、 微小 V 字パターン転写形成した GC 材を、型として利用 した.標準成形条件(負荷荷重:1kN;温度:ガラス転 移点直上;保持時間:60s)で転写成形した PMMA 材の 高倍率光学顕微鏡写真を、図 14 に示す.

図 11 に示した GC 型材のマイクロ V 字パターンを,図 14 の転写成形した PMMA 材の微細パターンと比較する

と、両者は高精度で対応する凹凸関係を呈している.この ことから、本成形装置により、微細パターンの高精度の転 写成形ができることが実証された.以上より、型技術とし てピコ秒レーザー加工を用いて、機械除去加工では加工の 困難なセラミック型材に2次元マイクロパターン・マイク ロテクスチュアを形成し、それを CNC 制御モールドプレ ス装置により、金属シート材・光学プラスチック材・光学 ガラス材に高精度転写成形することで、種々の光学機能素 子を創成することができる.

図 14 CNC 制御モールドプレスで転写成形したPMMA材(厚さ:1mm)の高倍率光学顕微鏡写真.

4. 考察

機械的除去加工のような工具を用いない、レーザー切削 加工では、レーザービームの照射条件・除去物質挙動(ア ブレーション挙動)などにより、加工挙動が支配される. 特に1次元パターン加工の典型である孔加工においては、 加工初期には厳格にコントロールされているレーザー加 工環境も、加工先端が深くなるにつれて不安定化すること が知られている^{6.7)}. 実際、シリコンを用いた直接観察実 験によれば、図15に示すように、一定パワーで光学系を 制御せずに、パルス数を単調に増加させて、深孔加工を行 った場合、所定のアスペクト比で制御不能になり、不安定 化する.これは、レーザーフォーカス位置がわずかに左右 にぶれるため、アブレーションが無制御状態で進行するた めに生じることによる.

この現象を回避するためには、前述したように、パルス 入射角度、レーザービームの焦点制御などの光学系の制御 が重要となる.特に、ビーム・ローテータのように、パル ス照射位置・入射角度などを実時間で制御できる機構が有 効となる.ここでは、研究者以外の実施例として、文献 8) における光学制御系による高アスペクト比の孔加工例を 参照する.この論文では、光学系制御のレーザー孔加工精 度への影響を検討しており、孔径が本研究よりも大きいが、 孔加工の入口・出口の形状不整もほとんどなく、図 15 で 観察された不安定性も抑制され、均一な孔加工が実施でき たことを報告している.

Number of pulses N / x100

図 15 深孔加工におけるレーザー加工の不安定性.

文献 9) に詳細に述べたように、本実験では、前述した レーザー加工による1次元孔配列に対して、シリコーン樹 脂を流入させ、固化したシリコーン樹脂を加工孔のレプリ カとして用い、上記不安定性の発生ならびに孔加工精度に ついて検討した.

図 16 当該レーザーマイクロテクスチュア法における孔 加工精度を評価するシリコーンレプリカ.

図16に示すように、一定の条件で連続1次元孔加工を 行っても、孔深さは一定を保持し、側面形状も良好である ことがわかる.

以上より,本研究における1次元パターニング加工の結 果からも推察されるように,ビーム・ローテータによるレ ーザービーム制御が,高アスペクト比でのレーザー加工中 に生じる無制御アブレーション現象を抑制し,形状・寸法 不整を解消する有効な手段となることが理解された.特に, 文献 6-8)で対象としている,比較的大きな孔径よりも, 本研究のように,1次元パターニングで扱う小径グルーブ では,この不安定性が顕著になると想定される.しかし, 上述のように全く不安定性は観測されず,高い孔加工精度 を示したことは,したがって,パルス時間で限定される理 論限界値にまで微細な1次元パターンニングを行うには, 光学系の多様な制御が必須となることを実証している.

5. 結論

本研究開発により,セラミック型材へのレーザー加工に よる多次元マイクロパターン技術の基礎を確立した.この 基礎に立って,次世代光学素子用の多次元マイクロパター ン形成を目指し,サブピコ秒レーザー加工・フェムト秒レ ーザー加工の研究開発も着手している.特に,レーザー加 工中に,深さ方向に出現する新生面・新稜線のシャープネ スに留意し,ホログラム技術を利用した光学系制御方法と レーザー加工パスの最適化を行い,位相制御レーザー加工 技術の開発を急いでいる.

レーザーテクスチュア技術は、すでに摩擦摩耗低減ある いは接合強度向上など、手面的な応用を進めており、本研 究成果を今後とも十分に活用していきたい.

謝辞

レーザー加工実験では,芝浦工業大学・黒住氏,伊藤君, 佐藤君,㈱リプスワークス・井ノ原氏,小俣氏,三本松氏, 古守氏の協力を得た。ここに深謝を述べる。

参考文献

- 1)相澤龍彦・井ノ原忠彦:芝浦工業大学研究報告理工学編, 56-1 (2012) 17-26.
- 2) T. Aizawa, K. Itoh, T. Inohara: Proc. 6th ICOMM Conference (2011) 77-82.
- 3) 相澤,(㈱リプスワークス:特願 2011-212046 (2011).
- T. Aizawa, T. Inohara: 7th ICOMM Conference (2012) 66-73.
- 5) T. Aizawa, K. Itoh, T. Fukuda: Proc. 10th ICTP Conference (2011) 1097-1102.
- S. Doering, Soeren Richter, S. Nolte, A. Tuennermann: Optics Express 18 (2010) 20395-20400.
- S. Doering, Soeren Richter, S. Nolte, A. Tuennermann: Proc. SPIE 7925 (2011) 792517-1 - 8.
- D. Ashkenasi, N. Mueller, T. Kaszemeikat, G. Illing: JLMN-J. Laser Micro / Nano-engineering. 6 (19) (2011) 1-5.
- 経済産業省:戦略的基盤技術高度化事業報告書 (2012).