鋼/アルミニウム合金の突合せレーザ接合材の

接合界面の微小構造と成形性

京都工芸繊維大学、大学院工芸科学研究科 機械システム工学部門

准教授 飯塚高志

(平成 22 年度一般研究開発助成 AF-2010212)

キーワード:レーザ溶接,異種金属接合,エネルギー分散型X線分析(EDS)

1. 研究の目的と背景

二酸化炭素の排出量削減や省資源のために輸送機器の 燃費の向上や将来の自動車の電化および燃料電池化など を目的として,輸送機器の軽量化が大きな課題となって いる.このような軽量化の1つの方法として,材料の軽 量化があり,鋼材とアルミニウム合金材と併用する方法 は有望な候補である.薄板成形を念頭に置けば,鋼/ア ルミニウム合金のテーラードブランク成形が可能となれ ば,コスト面でさらに効果的であるが,強度や信頼性な ど超えるべきハードルが残っている.

鋼/アルミニウム(合金)の系は, 脆弱な金属間化合物を生成しやすいことから, 難接合性の組合せとして知られている¹⁾. このような異材接合においては, 摩擦撹拌接合のような固相接合²⁾やリベットなどの機械的な接合³⁾が有効であり,高い接合強度が得られている.また, レーザ溶接に関しても, 沓名ら¹⁾および西本ら⁴⁾はロール圧縮を利用することによって, 鋼/アルミニウム合金の高強度な重合せ接合を可能にしている.しかしながら, テーラードブランク成形に適した突合せレーザ接合に関しては, Sepold ら⁵⁾の報告を除いてほとんど見られない.

本研究室では、加圧装置を併用して鋼板/アルミニウム板の突合せレーザ接合を試み、母材と同程度の強度を 有する接合材を得ることができている⁶⁾.また、接合材 のテーラードブランク成形として基礎的な成形性試験を 試み、絞り比 1.69の深絞り加工が可能であることを確認 している⁷⁾.しかしながら、接合界面の微視的観察や元 素分析についてはほとんど実施しておらず、またそれら と強度や破断条件との関連は興味深いものである.

そこで本研究では,以下の3つの目的で鋼/アルミニ ウム合金の突合せレーザ接合材の接合界面の微小構造と 成形性に関する調査を行った.

- (1) レーザ出力,パルス周波数および加圧力が接合強度 に及ぼす影響を調査するとともに,基本的な接合界 面の微視的状態を明らかにする.
- (2) エネルギー分散型 X 線分析(EDS)によって, 界面に 形成された金属間化合層の状態を明らかにする.

(3) 接合材の成形性試験を行い,破断部の接合界面の観察と EDS 分析から破断の形態を明らかにする.

2. 加圧突合せレーザ接合方法

本実験では、炭酸ガスレーザ加工機に図 1(a)に示す加 圧突合せ装置を併用することで、鋼板/アルミニウム(合 金)板のレーザ接合を行った.突合せ加圧は、鋼板(SPCC) を固定ホルダに、アルミニウム(合金)板を可動ホルダ にそれぞれ配置し、エアシリンダによって可動ホルダを 固定ホルダに押付けて行う.図 1(b)に示すように、ホル ダからの突出し量はそれぞれ 1.5mm としている.

レーザ光は主にエネルギー吸収率の高い鋼側に照射す し、鋼側から熱伝導によってアルミニウム(合金)側を 加熱する(図1(c)).加圧することによって、熱伝達を 向上させるとともに、溶融・半溶融部を変形、流出させ 接合させる. 突合せ界面からのレーザ照射位置 x はレー ザ出力 S, パルス周波数 B と共に重要な接合パラメータ と考えられる.

図2に突合せ接合材の外観の例を示す.これら接合材 の強度は引張試験によって評価した.ここでは、 簡単の ため図1(d)のように短冊型のままで引張試験を行い, 破断荷重を接合界面近傍のアルミニウム(合金)の初期 断面積で割った値として評価している.

3. 研究成果

3.1 突合せ接合材の強度および界面の状態

図3にSPCCとA1050P-Oを対象に平均レーザ出力, パルス周波数および照射位置xを変化させて加圧突合せ レーザ接合を行い,得られた結果について照射位置xに 関するピーク接合強度smをマッピングした結果を示す. 加圧力は31MPaと設定している.図の格子点の位置が測 定点を表わしている.

図より平均レーザ出力 600W, パルス周波数 200Hz で 高い接合強度を持つ接合材が得られていることがわかる. そこで,表1に示す接合条件で加圧力およびレーザ照射

図3 SPCC/A1050-O突合せ接合材の接合強度に及ぼす 出力とパルス周波数の影響(P=31MPa)

平均レーザ出力 S ,W	200, 500, 800
パルス周波数 B, Hz	200
デューティ比 T / %	50
レーザ移動速度 F / mm/min	600
レーザ照射位置 x / mm	$-0.20 \sim 0.30$
照射間隔 $\Delta x / mm$	0.05
焦点位置 <i>z</i> / mm	1.5
ノズル高さ h / mm	9
ノズル内径 φ / mm	5
空気吹付け量 f / l/min	75
加圧力 P / MPa	$31 (0 \sim 125)$

表1 SPCC/A1050-Oレーザ接合条件

(c) S = 800 W

図4 SPCC/A1050-O突合せ接合材の接合強度に及ぼす レーザ照射位置と加圧力の影響(B=200Hz)

位置 x を変化させて,3 種類の平均レーザ出力で接合実 験を行って得られた結果を図4に比較する.これに関し ても図の格子点が測定点を表わしている.図に示したよ うに、一定以上のレーザ平均出力では、加圧力の増加と ともに高い接合強度を得られる照射範囲が広がっている ことがわかる.また、この場合低い加圧力でも限られた 範囲で 60MPa~70MPa 程度の接合強度が得られている ことが確認できる.

図4に示した強度マップから、レーザ照射位置xに関 するピーク強度をまとめた結果を図5に示す. 平均レー ザ出力が200Wの場合加圧力の影響は小さいが、500W 以上になると加圧力の増加とともに接合強度も増加し、 母材強度を上回る強度に達することが確認できた.

図6にSPCCとA1100P-Oの加圧突合せレーザ接合材 の接合界面の走査型電子顕微鏡(SEM)による観察写真 について観察倍率を変えて示す.

図 6(a)に示した 80 倍の写真では, 接合界面が複雑に入 組みながら明瞭な金属間化合物層がなく接合されている 様子が観察されている観察倍率を500倍から1500倍に拡 大していくと, 徐々に金属間化合物層が現れてきている. 図 6(c)に示した 1500 倍での観察写真では, デンドライト 様の金属間化合物の成長が確認できるとともに, 数µm 程度の層状の金属間化合物が存在することも明らかにな っている.また,空隙などは見られなかった.

次に SPCC と A5052P-H34 に関して,表 2 に示した条件で加圧突合せレーザ接合を行った.パルス周波数および照射位置 x を変化させて,3 種類の平均レーザ出力で 接合実験を行って得られた結果を図7に比較する.加圧力は 31MPa である.図から,パルス周波数に関しては低いほど接合強度が高くなり,その照射範囲も増加する傾向が見て取れる.この傾向は出力にも依存し,レーザ平均出力が低い場合(200W)は強度も接合範囲も小さく,高すぎる場合(600W)には接合範囲は広がるものの接合 強度は低い値となる.

図3と同様に照射位置xに関するピーク接合強度についてまとめた接合強度マップを図8に示す.A1050P-Oの場合と比較して、平均レーザ出力、パルス周波数ともにやや低めの条件で高い接合強度が得られることが確認できる.これはA5052がA1050と比較して、熱伝導率が低く、レーザからのエネルギー吸収率が高く、また融点や比熱が小さいため、熱が溜まりやすい(拡散しにく)ことに起因していると考えられる.

平均レーザ出力 S,W	200 - 600
パルス周波数 B,Hz	100 - 1600
デューティ比 T / %	50
レーザ移動速度 F / mm/min	600
レーザ照射位置 x / mm	$-0.20 \sim 0.40$
照射間隔 Δx / mm	0.05
焦点位置 z / mm	1.5
ノズル高さ h/mm	9
ノズル内径 φ / mm	5
空気吹付け量 f / l/min	75
加圧力 P / MPa	31

表2 SPCC/A5052-H34レーザ接合条件

図7 SPCC/A5052-H34突合せ接合材の接合強度に及ぼす レーザ照射位置と加圧力の影響(P=31MPa)

図9加圧力とSPCC/A5052-O突合せ接合材の接合強度

SPCC および A5052P-H34 について接合強度に及ぼす 加圧力の影響をまとめたものを図9に示す.パルス周波 数は100Hz である.図より、この場合 A1050P-O の時と 異なり、加圧力の増加によって接合強度が減少する傾向 を示すことがわかる.これに関する詳しい原因は特定で きていないが、強度比の相違や生成される金属間化合物 の状態が影響していると考えられる.

図10 SPCC/A5052-O突合せ接合材の界面の様子 (S = 800 W, B = 100 Hz)

図 10 に SPCC と A5052-O の加圧突合せレーザ接合材 の界面近傍の SEM 観察結果を示す. A1050-O の場合と は異なり, SPCC 側でレーザの照射部で大きな溝が形成 されていることがわかる. この溝の存在が接合強度に及 ぼす影響は小さいが,接合界面近傍の構造に影響を与え ている可能性は高い. 接合界面形状はやはり入り組んで おり,図 10(b)に見られるようにデンドライト状の組織の 発展が確認できる. 空隙はやはり見られなかった. しか しながら,図 10(d)のように接合条件によっては,ほとん ど明瞭な金属間化合物層が存在しない接合界面を生成さ せることも可能であることが確認できた.

3.2 突合せ接合材接合界面の金属間化合物層の同定

ここでは、エネルギー分散型 X 線分析(EDS)を用いて、 界面に形成された金属間化合層の状態を調査した.まず、 SPCC/A1100P-Oの接合材界面について、図 6(b)に示し た接合界面の中でデンドライト組織が形成されている領 域および比較的に金属間化合物層が薄い領域について、 それぞれ簡易定量元素分析を行った結果を図 11 および 表3に示す.図 11 の各点と表3の元素分析結果が対応し

(a) 明瞭な金属間化合物層 (b)薄い金属間化合物層 図11 接合界面近傍の金属間化合物(SPCC/S1100-O)

衣3 EDS間易止里汀別 稻禾(SPCC/AII00-0	DS 簡易定量分析結果(SPCC	/A1100-O)
------------------------------	-------------------------	----------	---

No.	Al mol%	化合物	No.	Al mol%	化合物
P1	74.5	FeAl ₃	P7	38.6	$Fe_3Al + FeAl$
P2	71.5	Fe ₂ Al ₅	P8	16.1	Fe + Al solute
P3	32.0	$Fe_3Al + FeAl$	Q1	77.7	FeAl ₃
P4	56.4	FeAl	Q2	98.9	Al
P5	80.6	FeAl ₃	Q3	23.7	Fe ₃ Al
P6	91.1	Al	Q4	42.9	FeAl

ている.図 11(a)に示したデンドライト組織が見られる領 域においては,点 P1 および P5 のようにデンドライト組 織は脆弱な FeAl₃ である可能性が高い.また,点 P2 で表 わされる金属間化合物層は Fe₂Al₅ もしくは FeAl₃ といっ た脆弱な金属間と考えられ,10 µ m 以下ではあるが,こ のような金属間化合物層が生成されていると考えられる. また,アルミニウムに拡散した Fe 原子はこのような脆弱 な細かい金属間化合物を生成し,鋼側に拡散した AI 原子 は非常に幅の広い範囲で FeAl や Fe₃Al といった金属間化 合物として存在していることが明らかとなった.

図 11(b)に示した比較的薄い金属間化合物層を形成している領域では、一部デンドライト的な組織を形成しているもののほとんど明瞭な金属間化合物層は確認できない.ただし、鋼側に拡散した Al 原子はやはり幅の広い範囲でFeAlやFe₃Alといった金属間化合物として存在していることと考えられる.

図 12 には、図 10 に示した SPCC と A5052-O の接合界 面の EDS 解析の結果を示している. デンドライトなど明 瞭な金属間化合物層が観察された領域と金属間化合物層 がほとんど観察されなかった領域に分けて,それぞれ FE-SEM2 次電子像と AI モル濃度分布を示している. AI モル濃度分布は 20%ごとに色分けして示しているが,表 3 に示した結果との対応では、0-20%が Fe+固溶 AI, 20-40%が Fe₃Al+FeAl, 40-60%が FeAl, 60-80%が Fe₂Al₅ +FeAl₃, 80%-100%が AI である可能性が高い. ただし, 分解能の限界や深さ方向の情報の重なりもあるため,一 部平均的な評価となっていることに注意が必要である.

図 12(a)からデンドライト状の組織は A1050 の場合と 同様に Fe₂Al₅もしくは FeAl₃であり,層状に成長した化 合物層は FeAl₃であると考えられる.鋼側には広く成長 した Fe₃Al と FeAl の混在した領域が広がっており,島状 に見られる Al 濃度が 0-20%の領域も Fe 内に Al が拡散 した組織となっていると考えられる.

金属間化合物がほとんど見られない領域では,鋼側の Fe₃Al と FeAl の混在する領域も観察されない.しかしな がら,図 12(b)の上部では急激に 10µm~20µm 程度の金 属間化合物層が成長していることがわかる.入熱の程度 とともに界面の凹凸など形状にも依存して,成長しやす い領域としにくい領域があるものと考えられ,均一な厚 さの化合物層を形成することが難しいことを示している.

3.3 突合せ接合板の成形性と破断のメカニズム

図 13(a)のように SPCC と A1100P-O を用いて, 接合して 89mm×90mm となる接合板を作製し, 基本的な成形 性試験を行った. 接合条件は図 3 および図 5 の結果を参 考に選定した. 主な接合条件を表 4 に示す.

図 13(b)にはレーザの照射開始位置から測った接合位 置と接合強度および全伸びの関係を示している.この評 価に用いる試験片は接合板の両端 5mm ずつを除く領域 から幅がおよそ 10mm の試験片を 8 枚切出して,引張試 験を行うことによって評価した.図から接合位置 y がお よそ 30mm 以上では強度がほぼ一定になることが確認で きる.ただし,この強度領域では全伸びは敏感に変化し, 多少の強度の上昇で全伸びが 2%から 4%まで大きく変 化していることに注意が必要である.

成形性試験としては,深絞り試験,エリクセン試験お よびビードに平行な引張試験を行った.深絞り成形で得 られた深絞り容器,エリクセン試験および引張試験の破 断部の様子をそれぞれ図14に示している.また,これ れら成形性試験の結果を表5にまとめて示している.

図13 成形用接合板の作製と力学特性

表4 成形用板の接合条件

平均レーザ出力 S/W	500
レーザ移動速度 F/mm/min	600
加圧力 P/MPa	94
アシストガス	Air
ガス吹付け量 <i>f / l/</i> min	44
材料(t 1.0 mm)	SPCC,
	A1100-O

(a)深絞り試験 (b) エリクセン試験 (c) 引張試験図14 成形性試験後の破断の様子

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	表5	成形性試験の結果
---------------------------------------	----	----------

	SPCC/		
材料	A1100	A1100	SPCC
最大(限界)絞り比	1.69	2.09	2.38
エリクセン値 /mm	2.30	11.35	13.37
引張強さ(平行)/MPa	167	100	287
全伸び(平行)/MPa	16	31	50

図15 ビードに平行な引張りによる破断の形態

深絞り試験の破断は主にパンチ上面で,エリクセン試 験の破断はパンチ頭頂部でいずれも接合界面に沿って生 じた.したがって,いずれも成形限界は界面接合強度に 依存したものとなっていると考えられ,局部的ネッキン グに起因して生じる通常の試験における破断形態とは異 なると考えられる.

ビードに平行な引張試験では、図15に示すようにまず ビード部に割れが発生し、このビード部の割れの起点と してアルミニウム側でネッキングから破断に至る. その 後、鋼側でネッキングし、破断するという形態をとった. したがって、破断についてはビード部の低延性に起因し て生じたものと考えられ、界面に平行な破断とは異なる 形態であると考えられる.

ビードに平行な引張試験によって破断した試験片の界 面近傍の FE-SEM2 次電子像および EDS によって得られ た Al 強度を図 16 に示す. 図よりレーザ照射位置からア ルミニウム側では広く Al が分布した領域が確認でき,こ の領域が巨視的なビード部となっていると考えられる.

図 16(a)に示した B および D の領域を拡大して EDS 分析した結果を図 17 に示す. 図 17(a)に示したように, 脆弱な FeAl₃ と Fe₂Al₅で構成されている領域から割れが発生し,それが広く分布した Fe リッチな金属間化合物層を横断するように鋼側に成長していることが確認できる. 一方で明瞭な金属間化合物層が観察されない領域ではこの時点で割れは存在していない.

図16 ビードに平行な引張による破断試験片(全体)

_____ (d) 下部 (位置 D)

図17 ビードに平行な引張による破断試験片(詳細)

これらのことから、低延性に起因して生じる破断では、 脆弱な金属間化合物層で発生した亀裂がまず Fe リッチ な金属間化合物層を横断する形で成長し、その後板厚方 向に進展して破断するものと考えられる.

一方,エリクセン試験で破断した試験片の破断部の様 子を図18に示す.図から鋼側,アルミニウム側にいずれ も金属間化合物が存在している様子が確認できる.

図 18 のアルミニウム側および鋼側について拡大して 観察し, EDS 解析を実施した結果を図 19 に示す. 図 19(a) に示したアルミニウム側では広くデンドライト組織がひ ろがっていることが確認できる.また,上部に見られる 亀裂はデンドライト組織と層状組織の界面に沿って主に 進呈している様子が確認できる.一方,鋼側では FeAl や Fe₃Al のような Fe リッチな金属間化合物層が残ってい ることが確認できる.

これらのことから,接合強度に依存する破断では亀裂 は主に脆弱な金属間化合物層に沿った形で進展し,破断 に至っているものと考えれる.

4. 結論

本研究では、鋼/アルミニウム(合金)の加圧突合せ レーザ接合による接合材の強度および接合界面の状態を 観察分析した.結果として、平均レーザ出力、パルス周 波数および加圧力が接合強度に及ぼす影響を明らかにし た.また、接合界面にはデンドライト状および層状の脆 弱な金属間化合物が数 μ m~数10 μ mの程度で生成して いることがわかった.鋼側には広くFeリッチな金属間化 合物が分布していることも明らかになった.しかしなが ら、界面には空隙は確認されなかった.成形性試験にお ける破断の形態は低強度および低延性のそれぞれに起因

(a) 左部 (アルミニウム側)

(b)右部(鋼側) 図19 エリクセン試験による破断試験片(詳細)

する2つの形態で発生し、破断のメカニズムがそれぞれ 異なることが示唆された.

謝辞

本研究を遂行するにあたり(公財)天田財団より平成22 年一般研究開発助成(AF-2010212)をいただきました. ここに心より感謝の意を表します.

参考文献

- 1) M.J. Rathod M. Kutsuna, : Welding Research, 83 (2004), 16s-26s.
- T. Tanaka T. Morishige, T. Hirata : Scripta Materialia, 61 (2009), 756-759.
- Y. Abe T. Kato K. Mori : Journal of Materials Processing Technology, 177 (2006), 417-421.
- K. Nishimoto H. Fujii S. Katayama : Science and Technology of Welding and Joining, 11 (2006), 224-231.
- 5) G. Sepold M. Kreimeyer :
- Proceedings of SPIE, 4831 (2003), 526-533.
- 飯塚高志・瓜田二朗・高倉章雄:第56回塑加連講論, (2005),543-544.
- T. Iizuka S. Kajikawa N. Hatanaka N. Takakura : Steel Research International Special Ed. (ICTP 2011), (2011), 651-656.