レーザピーニング技術の生産性向上を目指した

各種金属の動的降伏応力評価の研究

大阪産業大学 工学部 電子情報通信工学科

准教授 部谷 学

(平成 22 年度一般研究開発助成 AF-2010210)

キーワード:動的降伏応力、衝撃波圧力、VISAR、画像計測、光電計測、LAPCO

1. 本研究の目的と背景

レーザピーニング (LP: Laser Peening) とは、金属塑 性加工を用いたレーザ表面処理技術の1つである.レーザ 誘起衝撃波によって金属を塑性変形させ、加工硬化や圧縮 残留応力を付与し、金属部品の高強度化、長寿命化を実現 できる(図1).LPの類似技術に、産業界で幅広く利用さ れているショットピーニング (SP: Shot Peening) がある (図1).LPは、宇宙航空産業、原子力産業に実用化され ている.更に、レーザ光の集光性を活かすことにより、精 密部品(複雑形状、小型、薄板)への応用が期待されてい る.しかしながら、量産品である精密部品へ普及させるた めには、生産性が低い(処理速度が遅い)というデメリッ トを克服する必要がある.

図1 LP と SP の原理の概要.

生産性向上のためには、各種材料にあったレーザ条件で 処理する必要がある. ピーニングに支配的なレーザ条件と して、パワー密度(パルスエネルギー、スポット径)、カ バレージ(ビームのオーバラップ率、走査速度)がある. その中でも、パワー密度(GW/cm²)は発生する衝撃波圧力 を決める重要なパラメータである.パワー密度の最適化に よって、適切な衝撃波圧力を発生させ、金属材料の降伏応 力を超えた領域で塑性変形を起こさせる.この時、降伏応 力は、時間によって変化し、また、材料に固有の値を取る ことが知られている.つまり、レーザ条件の最適化のため には、材料ごとの動的降伏応力を評価する必要がある.

本助成事業では、①光干渉計を用いた塑性波(動的降伏 応力)の測定環境の立上、②シミュレーション開発に取り 組んだ.①塑性波を計測することで、各種金属の動的降伏 応力を実測できる.塑性波とは塑性変形が起こった際に生 じる音波であり、塑性波の発生は、動的降伏応力を超える 衝撃波圧力の発生を意味している(図2b).つまり、塑性 波計測によって、塑性変形を効果的に発生できるパワー密 度を実験的に求めることができる.本助成事業では、VISAR (Velocity Interferometer System for Any Reflector) と呼ばれる速度干渉計を LP 試験装置の周辺に構築し、塑 性波の測定環境の立ち上げに取り組んだ(図2,図3).

②金属材料中を伝搬する音波の挙動をシミュレーショ ンできるソフト開発を行った.塑性波計測における実験結 果と計算結果を比較し,実験結果を再現できるシミュレー ションコードの開発に取り組んだ.

2. 実験方法

2.1 VISAR を用いた衝撃波計測

図3に示したように、VISAR(速度干渉計)を用いて衝 撃波計測を試みた.金属サンプル表面で発生した衝撃波は、 サンプル中を伝搬し、その裏面を振動させる.その振動の 様子を光干渉計測によって時間分解計測することで、衝撃 圧力の時間発展を計測できる.検出器に ICCD

(Intensified Charge-Coupled Device)を用いた画像計 測と PIN photodiode を用いた光電計測の2通りの実験を 行った.

図 2 塑性波を計測することにより、パワー密度と金属の動的降伏応力の関係を知ることができる.

図3 VISARを用いた衝撃波圧力測定の実験配置図.

図4にそれぞれの測定原理を示す.画像計測では干渉縞 のフリンジシフトを画像として取得し,光電計測ではオシ ロスコープで光干渉信号の時間分解計測を行った.

2.2 シミュレーション開発

図5は、開発したシミュレーションコードのフローチャ ートである.原子モデルコードを用いて、原子のエネルギ ー準位、ポピュレーション、電離度などのデータを様々な 温度密度範囲で求める.そのデータを状態方程式コードに 入力し、圧力、比熱等を求める.原子のエネルギー準位、 ポピュレーション,電離度などのデータをスペクトルコー ドに入力し,X線の放射係数,吸収係数等を求める.圧力, 比熱,X線の放射係数,吸収係数等のデータをテーブル化 し,Laser Ablation Peening Code (LAPCO)に入力し,固 体金属の温度上昇,固体中の応力の分布,相変化,流体運 動,放射輸送等の計算を行う.

図4 フリンジシフトからの衝撃圧力測定原理の概要.

○潜熱を考慮すること等により、相変化を取り入れている。
○原子モデルにより、電子の励起、電離に必要なエネルギーを求め、 それを用いて求めた比熱、圧力等を用いることにより、 励起、電離によるエネルギー損失を含んだプラズマの運動を求めている。
○X線(含む可視光)の放射輸送を解いている。

図 5 レーザアブレーションピーニングコード (LAPCO) の概要.

3. 実験成果

3.1 VISAR を用いた衝撃波計測

まずは、光干渉計測が適切に行えているどうか確かめる ために、画像計測実験を行った.実験条件を表1に示す. 集光レンズのNAを変えて実験を行った.実験結果を図6, 図7に示す.衝撃波速度にして1-2km/s,圧力換算で 10-15GPaの結果が得られた.このパワー密度においては、 数 GPa 程度の圧力が発生することが分かっており、過大評 価となっていることが分かる.この差については現在調査 中である. なお,絶対値評価の妥当性については今後引き 続き確認する必要があるものの,NAを変化させると発生 圧力が変化することが明らかとなったことは興味深い.今 まで発生圧力とNAは相関が無いものとして,レーザピー ニング処理が行われてきたが,ピーニング条件の中に集光 特性であるNAも考慮する必要があることを示すことがで きた.

図 6, 図 7 の結果は図 2 での弾性波を計測していること になる. 塑性波を計測するには,時間応答が速い光電計測 を行う必要がある.本助成事業で目標とした塑性波計測の ために,光電計測を行ったものの,光干渉計測で用いたプ ローブ光の出力が足りず,光干渉信号を検出することがで きなかった.今後は,高出力のプローブレーザを用いて光 電計測を引き続き行っていく計画である.

3.2 シミュレーション開発

図8にLAPCOでシミュレーションした結果を示す.レー ザ波長は532nm,パワー密度2.5GW/cm²,パルス幅7.5ns, サンプルは水中に設置したアルミニウム合金であった. Fabbroと書かれている曲線は、レーザピーニングで良く 知られている衝撃圧力を見積もるためのモデル式[1]を用 いた結果である.そのモデル式には、プラズマ長やレーザ エネルギーから衝撃波への変換効率などが含まれており、 これらについてはシミュレーションコードを用いて実際 に計算し、衝撃圧力を見積もった.図8左から、衝撃圧力 の時間発展において、両者は極めてよく一致しており、シ ミュレーション結果の妥当性が確認できた.

図8右にパワー密度を変化させた場合の衝撃圧力の最 大値のシミュレーション結果を示す.図8左と同様に、パ ワー密度2.5-20 GW/cm²の領域でシミュレーション結果と Fabbroモデルがよく一致していることが分かる.なお、 Simple Formulaと書かれた曲線は、Fabbroらが提唱して いる簡易モデルで求めた計算結果であり、これと比べても その差は2倍程度であり、LAPCOを用いたシミュレーショ ン結果の妥当性を確認することができた。

表1 衝擊波計測実験条件.

Laser	Nd:YAG laser
Wavelength	532 nm
Pulse width	4 ns
Repetition rate	10 Hz
Focal length of the lens	100 mm
Focal spot size	500 µm
Laser intensity	1.0 GW/cm ²
Materials	SUS316L
Confinement layer	Air
N.A.	0.005~0.035

図6 NAを変えた時の衝撃波速度の変化.

図7 NAを変えた時の衝撃波圧力の変化.

図8 水中に設置したアルミニウムにおけるプラズマ圧 力の計算結果.

図9に、材料内部を伝搬する応力の空間プロファイルの 計算結果を示す.まだ、実験結果との比較まで行えていな いが、X線応力測定結果と比較することで、今後、衝撃圧 力だけでなく、圧縮残留応力の見積もりが期待できる。

図9 水中に設置したアルミニウム中を伝搬する応力の 空間プロファイルの計算結果.

4. 結言

本助成事業では、①光干渉計を用いた塑性波(動的降伏 応力)の測定環境の立上、②シミュレーション開発に取り 組んだ.①VISARを用いた画像計測によって、弾性波の衝 撃速度(衝撃圧力)を導出できる環境が整った.しかしな がら、得られた結果は従来の結果よりも過大評価であり、 今後、計測結果の検証が必要である.また、光電計測によ る塑性波計測を試みたが、プローブレーザの出力不足で計 測することができなかった.プローブレーザの高出力化、 あるいは高感度検出器などを使用し、引き続き、研究に取 り組んで行く予定である.

②シミュレーションコード(LAPCO)を開発し、金属表 面で発生する衝撃圧力の計算についてはその妥当性を確 認することができた.また、材料中を伝搬する応力波を計 算する環境を整備できたが、その妥当性の確認については、 今後の課題である.

謝辞

本研究は、公益財団法人天田財団(一般研究開発助成) からの助成を受けて実施されたものであり、謝意を表する. また、本助成事業は、大阪産業大学、公益財団法人 レー ザー技術総合研究所、近畿大学の共同研究の成果であり、 共同研究者である古河裕之博士、中野人志博士に心から感 謝する.

参考文献

 P. Peyre, R. Fabbro, P. Merrien, and H. P. Lieurade, "Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour": Materials Science and Engineering, A210, 102-113, 1996.