マグネシウム合金押出過程における異方性発展予測手法の確立

熊本大学 大学院先導機構准教授 眞山 剛(平成22年度一般研究開発助成 AF-2010022)

キーワード: 押出加工,マグネシウム,集合組織,有限要素解析

1. 研究の目的と背景

マグネシウムは構造用金属材料の中で最も軽量である ため、機械構造物に適用することにより高効率化が期待 できる.特に輸送機器に適用すると、エネルギー消費と 二酸化炭素排出量の低減が可能であることから、深刻化 する環境問題への現実的な対応策という点から注目され ている.

マグネシウム合金は、塑性加工を施すことにより結晶 粒が微細化され、強度と延性といった機械的特性が改善 される.一方で、塑性加工に伴い著しい集合組織が形成 され、加工材は強い異方性を示すことも知られている. したがって、強度と延性の両方をバランス良く併せ持つ 素形材を創成するために、様々な加工条件を網羅的に探 査する試みが行われている.このような探査を数値解析 により支援可能となれば極めて効率的である.

結晶塑性解析手法は、金属材料のすべりを素過程とし て考慮することにより、塑性変形に伴う結晶方位変化を 追跡可能な数値解析手法として主に立方晶金属を対象と して様々な研究が行われてきた.この結晶塑性解析手法 をマグネシウム合金に適用することにより、塑性加工を 受けるマグネシウムにおける著しい集合組織発展を数値 的に予測可能とすることができれば、加工条件の最適化 への貢献が期待できる.

そこで本研究では、マグネシウム合金の集合組織発展 を高精度に予測可能な結晶塑性解析手法を開発すること を目的とした.そのために、実験観察により集合組織発 展挙動を把握し、得られた極点図を再現する数値解析手 法の構築と材料定数の同定を行った.さらに、構築した 解析手法を用いてパラメータスタディを行い、実験結果 と比較することにより集合組織形成機構を検討した.

2. 実験観察

2.1 溶解·鋳造

マグネシウム合金 AZ31 インゴットを高周波誘導溶解 により得られた溶湯を直径 30mm の鋳型に流し込み鋳 造材を作成した.

2.2 押出加工

上記により得られた鋳造材から直径 29mm の押出ビレットを作成し,押出温度 350℃,押出比 R = 10,押出 速度 2.5mm/sec の条件で押出加工を行った.

2.3 SEM/EBSD 観察試料

上記の押出加工により得られた押出材、および押出ダ

イスに残ったダイス通過中の材料より、低速カッターを 用いて押出中心軸付近の材料を切り出し、平行研磨後に クロスセクションポリッシャー(CP)を用いることによ り SEM/EBSD 観察試料を作成した.

2.4 押出加工に伴う集合組織変化

SEM/EBSD 観察データより極点図を作成し,押出加 工に伴う集合組織発展を調査した.図1(a)~(c)に(0001) 面の極点図.図2(a)~(c)に{10-10}面の極点図を示す.こ こで,紙面に垂直な方向を押出軸としている.図中のR は観察箇所に対応する押出比を示している.図1,2よ り本押出加工により著しい集合組織が形成されることが わかる.押出比 R=10における集合組織はマグネシウム 押出材の典型的な配向を示している.すなわち,底面の 法線方向が押出軸と垂直を向き,かつ柱面の法線方向が 押出軸と一致している.本研究ではこのような集合組織 形成を数値的に再現する手法を構築し,さらに集合組織 の形成機構を検討した.

なお、図1,2に見られる押出比 R=1.2 における強い 集積は、鋳造材の結晶粒系が粗大であり観察試料に十分 な結晶粒数が含まれていないことによるものであり、複 数回の観察から鋳造材の結晶配向はほぼランダムである ことを確認している.

(a) R = 1.2(b) R = 6.8(c) R = 10図1押出加工に伴う(0001)面の極点図変化

 (a) R = 1.2
 (b) R = 6.8
 (c) R = 10

 図 2
 押出加工に伴う{10-10}面の極点図変化

3. 解析手法

3.1 結晶塑性解析手法

本研究ではマグネシウムの集合組織発展を予測するた

め,結晶塑性有限要素法を用いた.本手法は Pierce ら[1] が提案した速度依存型結晶塑性モデルを構成式として用 いた.速度依存型結晶塑性モデルでは、すべり系 α のす べり速度 $\dot{\gamma}^{(\alpha)}$ を下記の式で仮定する.

$$\dot{\gamma}^{(\alpha)} = \dot{\gamma}_0 \operatorname{sgn}\left(\tau^{(\alpha)}\right) \left| \frac{\tau^{(\alpha)}}{g^{(\alpha)}} \right|^{1/m} \tag{1}$$

ここで、 $\dot{\gamma}_0$ は基準すべり速度、*m* は速度依存性係数、 $\tau^{(\alpha)}$ は分解せん断応力を示している.また、 $g^{(\alpha)}$ は臨界 分解せん断応力に対応した変数であり、一般には加工硬 化を表す発展則が必要である.しかしながら、本研究で 対象とする 350℃におけるマグネシウムの応力–ひずみ 挙動は、ほとんど加工硬化を示さないことから、 $g^{(\alpha)}$ を 定数とすることにした.

すべり系 α のすべり方向ベクトル $\mathbf{s}^{(\alpha)}$ およびすべり 面法線ベクトル $\mathbf{m}^{(\alpha)}$ を用いて定義されるシュミットテ ンソル

$$\mathbf{P}^{(\alpha)} = \frac{1}{2} \left(\mathbf{s}^{(\alpha)} \otimes \mathbf{m}^{(\alpha)} + \mathbf{m}^{(\alpha)} \otimes \mathbf{s}^{(\alpha)} \right)$$
(2)

を用いると, 塑性ひずみ速度テンソル $\mathbf{D}^{(lpha)}$ は次式で表す ことができる.

$$\mathbf{D}^{p} = \sum_{\alpha} \dot{\gamma}^{(\alpha)} \mathbf{P}^{(\alpha)} \tag{3}$$

一方, 塑性変形に伴う結晶格子の回転は塑性スピンテン ソル

$$\mathbf{W}^{p} = \sum_{\alpha} \frac{\dot{\gamma}^{(\alpha)}}{2} \left(\mathbf{s}^{(\alpha)} \otimes \mathbf{m}^{(\alpha)} - \mathbf{m}^{(\alpha)} \otimes \mathbf{s}^{(\alpha)} \right) \quad (4)$$

および巨視的スピン W を用いて,次式により各すべり 系のすべり方向とすべり面法線方向を更新することによ り表現される.

$$\dot{\mathbf{s}}^{(\alpha)} = \left(\mathbf{W} - \mathbf{W}^{p}\right) \cdot \mathbf{s}^{(\alpha)}$$
(5)

$$\dot{\mathbf{m}}^{(\alpha)} = \left(\mathbf{W} - \mathbf{W}^p\right) \cdot \mathbf{m}^{(\alpha)} \tag{6}$$

以上の構成式を大変形有限要素法の各積分点に導入する ことにより、多結晶体の各結晶粒間相互作用に起因する 不均一性を考慮した解析が可能であり、塑性変形量と結 晶方位変化を追跡することができる.

3.2 マグネシウム合金の変形モデル

前節で示した解析手法によりマグネシウム合金の変形 を表現するためには、マグネシウムの変形機構を導入す ると共に材料定数を決定する必要がある.マグネシウム の変形機構に関する研究は古くから主に純マグネシウム 単結晶を対象として行われており、底面すべり系に加え て複数の非底面すべり系と双晶系の活動とそれらの臨界 分解せん断応力(CRSS)が報告されている.一方,マグネ シウム合金は、高品質なバルク単結晶の製造が困難であ ることから、すべり系や双晶系およびそれらの CRSS に 関する報告は極めて少ない.そこで本研究では、 Barnett[2]がテイラーモデルを用いてマグネシウム合金 AZ31 多結晶材の変形挙動にフィッティングすることに より確定したパラメータに基づき 350℃における変形機 構および CRSS 値を決定した.表1,2に本研究で導入 した変形機構および解析に用いた CRSS を示す.

本研究では双晶系の活動による塑性ひずみおよび結晶 格子回転への影響を結晶塑性解析に導入した.塑性変形 への寄与は,双晶系の極性を考慮してすべり系と等価に 取り扱う手法[3]を用いた.また,双晶の活動による格子 回転への寄与は van Houtte が提案した確率的手法[4]を 用いた.すなわち,双晶系の活動による累積せん断ひず み量が予め定めた閾値に達した時点で,結晶粒全体を格 子回転させるものとした.

Table 1 結晶塑性解析で考慮した変形機構

Slip / Twin system	Slip direction	Slip plane
Basal < a >	<11-20>	(0001)
Prismatic < a >	<11-20>	{10-10}
Pyramidal-1 < a >	<11-20>	{10-11}
Pyramidal-2 < a + c >	<11-23>	{11-22}
{10-12} twinning	<10-11>	{10-12}

Table 2 解析に用いた CRSS

Slip / Twin system	Slip CRSS [MPa]
Basal < a >	5
Prismatic < a >	32
Pyramidal-1 < a >	32
Pyramidal-2 < a + c >	27
{10-12} twinning	32

3.3 解析モデル

図3は結晶塑性解析における有限要素メッシュおよび 境界条件の模式図を示している.解析モデルは初期にお いて立方体とし、均一に7×7×7要素に分割した.初期結 晶方位は擬乱数を用いて要素毎にランダム方位を与えた. 巨視的構成式を用いた予備解析[5]において,押出加工を 受ける材料の中心付近は,その負荷状態が等二軸圧縮に 近いことが示されている.そこで,本研究では押出加工 を等二軸圧縮として表現することにより結晶塑性解析を 行った.図3(b)は結晶塑性解析の境界条件を示している. 二方向から強制変位を与えることにより押出比 10 に対 応するひずみ量まで変形させた.

4. 研究成果

4.1 結晶塑性解析による集合組織発展

図4,5に等二軸圧縮解析により計算された集合組織 発展を示す.図4(a)~(c)に(0001)面の極点図.図5(a) ~(c)に{10-10}面の極点図を示している.図1,2に示し た実験観察結果と比較すると全体的な傾向は十分再現さ れていることがわかる.すなわち,底面の極点は変形量 の増加に伴い円周付近に集積し,柱面の極点は中心付近 に集積する傾向が再現されている.その一方で,底面の 円周部分への集積は実験と比べて弱いことがわかる.そ こで,解析に用いる CRSS 値を変化させることにより, 集合組織形成に及ぼす各変形機構の役割を調査した.

4.2 双晶系の抑制が集合組織発展に及ぼす影響

図6,7に双晶系のCRSSを十分に大きくし,双晶系 の活動を強制的に抑制した条件で実施した等二軸圧縮解 析より得られた集合組織発展を示す.図6(a)~(c)に (0001)面の極点図.図7(a)~(c)に{10-10}面の極点図を示 している.図4,5に示した双晶系を考慮した場合の結 果と比較すると,最終的に得られる極点図にはほとんど 違いが生じていないことがわかる.ただし,無視できな い相違点として,双晶系を考慮した場合の方がより集積 が顕著であることが挙げられる.これは,すべり系と双 晶系の活動による格子回転の相違に起因するものと考え られる.

4.3 非底面すべり系の活動度の影響

図8,9に双晶系の抑制に加えて非底面すべり系の CRSSを表2に示したものから500MPaと大きくした条 件で実施した等二軸圧縮解析より得られた集合組織発展 を示す.図8(a)~(c)に(0001)面の極点図.図9(a)~(c) に $\{10-10\}$ 面の極点図を示している.図4,5および図6, 7に示した結果と比較すると,底面の極点がより強く円 周部へ配向していることがわかる.これは,図1に示し た実験観察で得られた結果と近い.

4.4 各変形機構の相対活動度に基づく検討

本結晶塑性解析手法では,結晶方位変化と共に各変形 機構の活動度に関するデータも得られる.そこで,各変 形機構の相対活動度を用いて,集合組織形成機構に関す る検討を行った.ここで相対活動度とは,全変形機構の せん断すべり速度の絶対値の和に対する,各変形機構の

(a) R = 1.2(b) R = 6.8(c) R = 10図 5等二軸圧縮解析による{10-10}面の極点図変化

(a) R = 1.2(b) R = 6.8(c) R = 10図 6双晶系の活動を抑制した際の(0001)極点図変化

図7 双晶系の活動を抑制した際の{10-10}極点図変化

(a) R = 1.2
 (b) R = 6.8
 (c) R = 10
 図8 双晶系の活動を抑制し、非底面すべり系 CRSS を 500MPa とした場合の(0001)面の極点図変化

 (a) R = 1.2
 (b) R = 6.8
 (c) R = 10
 図 9 双晶系の活動を抑制し、非底面すべり系 CRSS を 500MPa とした場合の{10-10}面の極点図変化

せん断すべり速度の絶対値の割合として定義した.また, 本研究では解析モデル中に含まれる全ての結晶粒の相対 活動度の平均値について評価した.

図 10 は等二軸圧縮に伴う各変形機構の相対活動度の 変化を示している.いずれの場合も CRSS の最も小さい 底面すべり系が支配的に活動していること,非底面すべ り系の CRSS を 500MPa とした場合は変形初期には底 面すべり系の活動がより支配的であること,および変形 後期ではいずれの条件においても底面すべり系の活動度 はほぼ等しいことがわかる.したがって,図4,6,8 の集合組織発展に見られた底面配向の違いは,変形後期 の相対活動度の違いによるものではなく,底面すべり系 と非底面すべり系の CRSS の比に依存して,逆向きの格 子回転がバランスする結晶方位が異なるためであると考 えられる.また,双晶系を考慮した図 10(a)からは,双 晶系の活動は変形のごく初期に限定されることもわかっ た.

5. 結言

本研究ではマグネシウム合金のための結晶塑性解析手 法を構築し,押出加工における集合組織発展の予測を可 能とした.さらに,解析に用いるパラメータを変化させ ることにより,集合組織発展機構を数値的に検討するこ とも可能となった.以下に主な結論を示す.

- (1) 構築した結晶塑性有限要素法を用いて、AZ31 鋳造材の押出過程における集合組織発展を再現 することができた.
- (2) 非底面すべり系の CRSS を大きくすると底面の 配向が強まり、より実験的に観察される押出集 合組織に近づいた.これは、底面すべり系と非 底面すべり系による逆向きの結晶格子回転がバ ランスする結晶方位が、CRSS 比に依存するた めであると考えられる.
- (3) 数値解析より,変形量が大きくなると双晶系の 活動に関わらず同様の集合組織が形成されるこ とが示唆された.その要因は,双晶系の活動が 変形の初期に限定されるため,変形量の増加に 伴い各変形機構の活動度が同程度となるためで ある.

謝辞

本研究は公益財団法人天田財団より一般研究開発助成 (AF-2010022)を賜りました.深く感謝の意を表します.

参考文献

[1] Peirce, D. et al., "Material rate dependence and localized deformation in crystalline solids." Acta Metall. 31 (1983) 1951-1976.

[2] Barnett, M.R., "A Taylor model based description of the proof stress of magnesium AZ31 during hot working." Metall. Mater. Trans. A34 (2003) 1799-1806. [3] Staroselsky, A. and Anand, L., "A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B." Int. J. Plasticity 19 (2003) 1843-1864.

[4] Van Houtte, P., "Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning." Acta Metall. 26 (1978) 591-604.

[5] Mayama, T. et al.. "Crystal plasticity analysis of texture development in magnesium alloy during extrusion." Int. J. Plasticity 27 (2011) 1916-1935.

(c) 非底面すべり系の CRSS を 500MPa とした場合 図 10 等二軸圧縮解析における各変形機構の相対活動度