回折型ビーム整形素子を用いたレーザ合金化技術の開発

地方独立行政法人大阪府立産業技術総合研究所

加工成形科 主任研究員 萩野秀樹

研究員 山口拓人

金属材料科 主任研究員 武村 守

(平成 21 年度一般研究開発助成 AF-2009212)

キーワード: レーザ, 合金化, 回折型光学素子, CGH

1. 研究の目的と背景

レーザ合金化とはレーザ照射によって基材表面を局所 的に溶融させ、溶融領域に他の元素を混合させることで、 基材の表面に新たな特性を付与する手法である¹¹.この 手法は、必要な箇所のみを効率よく処理できるため、浸 炭のような長時間加熱の必要な処理と比べて省エネルギ ーでひずみも少なく、めっきのような廃液の問題もない ため環境負荷が小さい.また、高級な材料では高価な希 少元素が多く添加されているが、レーザ合金化では安価 な材料の必要な箇所のみに高級材と同等の特性を付与す ることができる可能性があり、希少元素の少量化・材料 コストの低減が期待できる.

本研究では、添加元素として炭素および炭素と親和力 の強い炭化物生成元素を利用し、炭素鋼の表面に耐摩耗 性に優れた合金層を形成させる手法について検討を行う こととした.

鉄鋼材料に対し,レーザ合金化の適用を検討した事例 は,これまでに CO₂レーザや YAG レーザを用いて純鉄や 低炭素鋼に炭素を供給して表面硬化させる手法²⁻⁴⁾や,鋳 鉄表面にタングステンやクロムを供給してこれらの炭化 物を利用した表面硬化法⁵⁾などが報告されている.この ようにレーザ合金化の有用性についての検討はなされて はいるが,実用化に至ったという報告はない.その原因 として,合金層に発生する割れや空隙といった欠陥の発 生や合金層組織が不均一となり十分な特性が得られない ことが考えられる.

レーザ合金化は急速な溶融・凝固プロセスであり,合 金層の特性はレーザ照射中の溶融池の状態(温度,サイズ, 溶融金属の対流など)によって大きく変化するが,この溶 融池は照射するレーザ光の強度分布に影響を受ける.本 研究では,回折型光学素子(CGH)⁶⁾を用いてレーザ光の強 度分布を変化させ,溶融池の状態を制御することで,合 金層の均一化と欠陥の低減を試みた.

2. 円形ビームを用いたレーザ合金化の基礎実験 2・1 実験方法

レーザ合金化に回折型光学素子を適用するにあたり予

表1 母材の化学組成 (mass%)

•		С	Si	Mn	Р	S
-	S15CK	0.13	0.27	0.44	0.007	0.006
-	S50C	0.51	0.22	0.66	0.014	0.006

表2 レーザ合金化実験に使用した添加元素

	添加元素	粉末 サイズ	混合比(重量比) C:M (M=Ti,Nb,V,W,Cr)
С	炭素(黒鉛)	約 5µm	—
Ti	チタン	45µm 以下	1:4
Nb	ニオブ	45µm 以下	1:8
V	バナジウム	75µm 以下	1:4
W	タングステン	約 5µm	1:15
Cr	クロム	63µm 以下	1:15

備実験として円形のビームを用いたレーザ合金化実験を 行い,合金層の特性(欠陥の有無,ミクロ組織,硬さ,摩 耗特性など)について調べた.

母材には炭素鋼 S15CK および S50C を用いた.母材の化 学組成を表1に示す.また,添加元素として用いた粉末 を表2に示す.

黒鉛粉末に種々の割合で各金属粉末を混合したものに エタノールを加えてペースト状にし,試料表面にあらか じめ加工しておいた溝に塗布した.溝深さは 0.1mm~ 0.5mm であり,溝深さによって粉末の供給量を調整して いる.ペーストが乾燥した後,試料にレーザ光を照射し て合金層を形成させた.

使用したレーザは最大出力1kWの高出力半導体レーザ (Laserline 社製 LDL160-1000)である.実験ではレーザ光 を試料に照射しながら一定速度で移動させた. 試料上の レーザ光のスポット径は1mmとした.レーザ照射部には, 大気による酸化を防止するため,アルゴンガスによるシ ールドを行った. アルゴンガスは口径6.4mmのサイドノ ズルを用いて,レーザ光移動方向に対して前方から流量 30L/min.で供給した.図1に本実験の模式図を,表3に レーザ照射条件を示す.

図1 レーザ合金化実験の模式図

表 3	レーザ合金化の実験条件
10	

レーザパワー(加工点)	720W
スポット径	1 mm
レーザ光送り速度	1 mm/s \sim 10mm/s
シールドガス	Ar 30L/min.

図2 合金層の断面マクロ写真の例 母材 S15CK, 黒鉛ペースト厚さ 0.25mm, レーザ光送り速度 2mm/s

得られた合金層の評価は、断面組織観察と硬さ測定に より行った。断面観察は、切断した試料を樹脂に埋め込 み、湿式研磨により鏡面に仕上げた後、3%ナイタールを 用いて組織を現出し、光学顕微鏡および走査電子顕微鏡 により観察した。硬さはマイクロビッカース硬度計を用 い、試験荷重 2.94N で測定した。

2・2 黒鉛粉末を用いた場合の合金層の特性

はじめに,黒鉛粉末のみを用いてレーザ合金化実験を 行い,低炭素鋼 S15CK の表面に炭素量の高い合金層の形 成を試みた.図2にレーザ合金化後の断面マクロ写真の 一例を示す.得られた合金層の幅は1.5mm~2.5mm であり, 深さは0.4mm~0.9mm であった.レーザ光送り速度と黒鉛 の供給量によって合金層のサイズは変化し,送り速度が 小さいほど,また黒鉛の供給量が多いほど合金層のサイ ズが大きくなる傾向が見られた.

光学顕微鏡および走査電子顕微鏡観察の結果から,合 金層のミクロ組織は,黒鉛ペーストの厚みや送り速度に よって変化することがわかった.また,レーザ合金化条 件によって合金層の硬さも異なることがわかった.合金

図3 合金層の断面硬さ分布 母材 S15CK, 黒鉛ペースト厚さ 0.1mm, レーザ光送り速度 2mm/s

合金層
レーザ照射のみ

______</li

(a)母材 S15CK, (b)母材 SS400

層のミクロ組織および硬さとレーザ合金化条件との関係 については、既に報告済み⁷⁾であるため、ここでの詳細 な説明は省略する.

図3は適正な条件で得られた合金層について,表面から0.1mmの深さにおける硬さ分布を測定した結果である. 比較のため,黒鉛を供給せずにレーザ照射のみを行なった試料についても硬さ分布を測定した.レーザ照射のみでも硬さは300HV程度まで上昇しているが,黒鉛を供給した場合は800HV程度まで硬さが上昇しており,高炭素鋼の焼入れ材に匹敵する硬さが得られている.

これまでの実験では合金層中に割れや気孔といった欠 陥は見られなかったが,軟鋼(SS400)への適用を試みた場 合,図4(b)に見られるような気孔が合金層中に観察され た.図4(b)において,試料右側は黒鉛ペーストを塗布し ておらず,レーザ照射のみが行われた領域であり,炭素 を供給した合金層の領域のみ気孔が発生していることが わかる.母材の酸素量を不活性ガス中融解-赤外線吸収法 により測定した結果,S15CKでは26ppmであったのに対 し,SS400では126ppmと多くの酸素が残存していること

図 5 合金層の断面マクロ観察結果 母材 S50C, 添加元素供給量(ペースト厚さ)0.2mm

がわかった.また,ロットの異なる酸素量の少ない軟鋼 (酸素量 18ppm)を母材とした場合は,気孔は確認できな かった.気孔の発生は,供給した黒鉛の炭素が溶融池内 で母材に含まれていた酸素と反応して CO ガスが発生し たことが原因の一つとして考えられる⁸⁰.従って,レー ザ合金化により炭素を供給するプロセスにおいては,十 分に脱酸された清浄な母材を使用する必要がある.

2・3炭化物生成元素を利用した合金層の形成

V, W, Cr などの元素は炭素との親和力が強く, 独自の 炭化物を形成しやすいため,炭化物生成元素と呼ばれる. これらの合金炭化物は,鉄の炭化物であるセメンタイト よりも高硬度であり,合金工具鋼などの高級鋼材におい て耐摩耗性を向上させるために利用されている.本実験 では炭化物生成元素を利用した合金層の特性について調 べた.実験に用いた条件は表3に示した条件である.

図5に合金層の断面マクロ写真を示す.いずれの元素 を用いた場合でも合金層の幅は1.5mm程度,深さは0.5mm 程度であり,合金層のサイズはレーザ光送り速度が速い ほど小さくなる傾向が見られた.

Ti,Nb,V を添加した場合は,合金層に空隙が観察された.一方,WやCrを添加した場合は,このような空隙は 観察されず,添加元素の種別によって欠陥の発生傾向に 差があることがわかった.

添加した元素は、レーザ照射によって一部はスパッタ として飛散し、一部は溶融池内に混入していくと考えら れる.合金層に添加元素がどの程度含まれているか調べ るため、SEM/EDX を用いて合金層中の添加元素の含有量 を測定した.その結果、添加元素の種別やレーザ照射条

図6 合金層の SEM 観察結果 (a) 添加元素 Nb, (b) 添加元素 W

件によって含有量は異なるが,約5~20mass%の割合で各 添加元素が存在していることがわかった.

合金層のミクロ組織を SEM にて観察した結果, Ti やNb を添加した合金層中には, 1~3µm 程度の粒子状の第二相 が観察された(図6(a)). 一方, Wや Cr を添加した合金 層は図に示すような網目状の組織を呈していた(図6 (b)). V を添加した場合は, 合金層の多くは網目状の組 織であったが, 一部に Ti や Nb で見られた形態と同様の 粒子状の第二相も観察される領域が見られた. EPMA にて 元素分析を行った結果, 粒子状や網目状の領域には添加 元素と炭素が濃化していることが確認できた. このこと から,合金層中には TiC や WC などの合金炭化物が形成さ れていると考えられる. しかし, X 線回折による結果か らは明瞭な炭化物のピークを得ることはできなかった. 特に WやCr などの炭化物においては異なる構造や組成比 の炭化物,あるいは Fe との複炭化物の形成も考えられる ため, 炭化物の同定にはより詳細な解析が必要である.

図8 合金層に見られた欠陥の例

図7はTiを添加した合金層について,表面から深さ方 向に硬さ分布を測定した結果である.比較のため,同じ 母材にレーザ焼入れを施した試料の硬さ分布を合わせて 示す.合金層では母材(S50C)の焼入れ硬度(約750HV) を上回る800HV以上の値が得られている.これは,硬質 な炭化物であるTiC粒子が分散しているためと考えられ る.この合金層の摩耗特性を調べるため,往復動式摩耗 試験機を用いて摩耗試験を行い,試験後の摩耗痕を測定 した結果,合金層の磨耗量はレーザ焼入れ材の約1/2で あり,耐摩耗性の向上も確認できた.

以上の結果から、レーザ合金化により高硬度で耐摩耗 性に優れた合金層を形成し、レーザ合金化の有用性を確 認した.しかし、図8に示すように、気孔や融合不良な どに起因すると考えられる空隙や、局所的に炭化物が密 集した領域が観察された.これらの欠陥や組織の不均一 性は合金層の機械的性質に悪影響を与える可能性がある ため、今後、改善していく必要がある.

3. CGH の設計と製作

3・1 レーザ合金化に最適な強度分布の検討方法

前章までの予備実験により、レーザ合金化の有用性を 確認することができたが、気孔や組織の不均一性といっ た課題も明らかになった.そこで回折型光学素子(CGH) を用いて強度分布を整形したレーザ光を用いて、合金化 時の溶融池の状態を制御することで、課題の解決を試み た.

図9 最適強度分布の基本形状

表4 熱伝導解析シミュレーションに用いた主な条件

基材の鋼種	S45C
試料サイズ	$20 \times 20 \times 10$ mmt
融点 9)	1530°C
密度 9), 10)	7860kg/m ³ (融点未満),
	7300kg/m ³ (融点以上)
境界条件	表面 0.8RAD (0.8 は放射率.
	1の場合は黒体面を意味する)
	底面:1000W/m ² K, 側面:断熱
雰囲気温度	25℃

はじめにレーザ合金化に最適な強度分布を有限要素法 を利用した3次元熱伝導解析(シミュレーション)によ り求めた.ここで最適な分布とは融点以上の温度を長時 間維持できる分布とした.基本的な分布として,はじめ に強いパワーで表面を溶融し,その後,凝固を防ぐため の小さなパワーを有する図9に示す分布を基本的な強度 分布とした.ただし,幅は1.5mmとした.強度①,②の 大きさ,強度②の長さを種々変えて,シミュレーション から最適な強度分布を求めた.

シミュレーションに用いた主な条件を表4に示す.融 点未満の物性値は文献⁹⁰の軟鋼(0.23C)の値を参照し, 温度依存性を考慮した.融点以上の温度では物性値を一 定とし,文献¹⁰⁰の値(軟鋼)を用いた.境界条件につい ては表面および底面からの熱の発散を考慮し,側面は断 熱とした.また,試料のレーザ光吸収率は実験と熱解析 の比較結果から51%とした.

シミュレーションでは CGH を透過し、試料に照射され

位置 [mm]

るトータルパワーを 300W とし、レーザ光の送り速度は 1mm/s とした.

シミュレーション結果から、最適な強度分布の形状を 強度①34.0W/mm²,強度②25.5W/mm²,強度②の長さ2.0mm とした.最適強度分布のレーザ光を試料に照射した場合 の、試料表面の温度変化を計算した結果を図10に示す. 比較のため、従来用いていた円形(ϕ 1mm)の均一強度を 持つレーザ光を照射した場合の計算結果も示す.最適強 度分布を用いた場合,融点以上に保持される時間が2.7 秒であり、円形の強度分布の場合の0.9秒よりも時間が 長くなっていることがわかる.

3・2 CGHの設計

CGH の模式図を図 11 に示す. CGH の表面の微細凹凸形 状は, 10μm×10μmのピクセルが並んだものであり, ピ

図 13 製作した CGH (左:全体,右:表面顕微鏡写真)

クセルごとに表面からの深さが異なっている. 深さは 4 レベルであり,最小段差 0.445 μ m,最も深いピクセルで 深さ 1.335 μ m である. ピクセル 64×64 個で構成された パターンをサブホログラムと呼び,同じサブホログラム を 60×60 個並べて CGH パターンを構成している.

次に CGH パターンの最適化を行った. 最適化には GS アルゴリズムを利用した. 最適化したサブホログラムパ ターンを図 12 に示す. また,設計した CGH を用いた場合 の強度分布(計算結果) も合わせて示す. 整形された強 度分布は,ほぼ目標通りの分布である.

3・3 CGH の製作

CGH 表面の凹凸形状はマスク露光とドライエッチング プロセスを組み合わせたフォトリソグラフィ技術を用い て作製した.最後に両面に反射防止コーティングを施し た.製作した CGH を図 13 に示す.

次に強度分布の整形実験を行った.強度分布の測定結 果を図14に示す.はじめのピーク強度部は、ほぼ設計通 りの形状であるが、その後の均一強度の分布は整形でき ていない.この原因については今後の課題である.しか し、おおむね設計通りの強度分布に整形できていた.

図 15 CGH を用いたレーザ合金化の模式図

表 5	CGH を用い†	ミレーザ合金	:化実験条件
-----	----------	--------	--------

レーザパワー	320W(試料上)
レーザ光送り速度	1mm/s
シールドガス	アルゴン
	20L/分(同軸ノズル)
	30L/分(サイドノズル)
粉末	炭素 (粒径5μm)
	塗布厚さ0.1mm
母材	S15CK

(a) 整形した強度分布(b) 円状の強度分布図 16 合金化を行った試料の断面マクロ写真

4. CGH を用いた合金化実験

4・1 合金化実験方法

製作した CGH を用いて合金化実験を行った.また,比 較のために円状の強度分布(スポット径 1mm,パワー 320W)でも実験を行った.実験方法は溝加工を施した試 料にエタノールでペースト状にした炭素を塗布して行っ た.CGH を用いた合金化実験の模式図を図 15 に,実験条 件を表5 に示す.

4·2 合金化実験結果

合金化実験を行った試料の断面写真を図16に示す.円 状の強度分布の場合,合金層の最大厚さは0.27mmであっ たが,CGHを用いた場合は合金層が観察されなかった.

CGH を用いた場合に合金層が観察されなかった要因として,熱伝導解析(シミュレーション)に用いた吸収率

の値が大きかった事が考えられる.円状の強度分布の場合,合金層の厚さはシミュレーションでは0.81mm だったのに対し,実験では0.27mm であり,シミュレーションの方が吸収率が高く見積もられていると思われる.CGH を用いてレーザ合金化実験を行うためには,さらに大きなパワーのレーザを用いて実験を行う必要があると思われる.

4. まとめ

本研究では回折型光学素子(CGH)を用いてレーザ光の 強度分布を変化させ、溶融池の状態を制御することで、 レーザ合金化の課題である組織の均一性や欠陥の低減に ついて改善を試みた.

円状の強度分布を用いた基礎的な実験から,母材の酸素含有量が気孔の発生に影響しており,十分に脱酸された母材を用いることにより,気孔を低減させることができることが解った.

CGH を用いて整形したレーザ光で合金化実験を行った が、合金層を得ることができなかった. CGH を用いたレ ーザ合金化実験を行うには、さらに大きなパワーのレー ザを用いる必要がある.

謝辞

本研究は,天田金属加工機械技術財団の一般研究開発 助成により実施した.ご援助いただきました財団および 関係各位に厚くお礼申し上げます.

参考文献

- 1)(社)日本溶接協会表面改質技術研究委員会編:レー ザ表面改質の現状と展開,(2001),32.
- 2) A. Walker, D. R. F. West, W. M. Steen: Metals Technology, 11, (1984), 399.
- 3)Y. Seki: J. Jpn. Soc. Heat Treat., 28, 4, (1988), 247.
- 4) M. Tayal, K. Mukherjee : Materials Science and Engineering, A174, (1994), 231.
- 5) 辻川正人,吉田希,川本信,日野実:鋳造工学,68,8, (1996),657.
- 6) 萩野秀樹,安藤輝,菊田久雄:第71回レーザ加工学 会講演論文集,(2008),183.
- 7)山口拓人,萩野秀樹,武村守:レーザ加工学会誌,18,3,(2011),189.
- 8)新成夫: 溶接冶金学, (1972), 丸善, 67.
- 9)日本鉄鋼協会編: 鉄鋼便覧I(第3版), 丸善, 214.
- 10) 西口公之,黄地尚善,中田尚文,石橋克哉:溶接学会 論文集,2,2,(1984),201.