高速レーザ照射による単結晶 Si 研削加エダメージの完全修復

慶應義塾大学 理工学部 機械工学科

教授 閻 紀旺

(平成 21 年度一般研究開発助成 AF-2009208)

キーワード:単結晶シリコン,加工ダメージ,レーザ修復

1. 研究の目的と背景

単結晶シリコン(以下 Si と記す)は、重要な半導体材料であ ると同時に、優れた赤外線光学レンズ材料でもある.単結晶 Si の形状創成は、通常、ダイヤモンド工具を用いた超精密切削や延 性モード研削などの機械加工プロセスによって行われている.一方、 機械加工による Si 単結晶のアモルファス化や転位の発生によって 表面内部には数十~数百 nm のダメージ層が形成される.加工ダ メージ層は極めて薄いものであるが、Si の機械的・電気的・光 学的性能に大きな影響を及ぼす.そのため、国内外においてダ メージ層の除去に関する研究開発が活発に展開されている.現 在、エッチングおよび化学的機械研磨(CMP)などの一連のプロセ スで加工ダメージ層の除去が行われているが、ダメージの残留や 生産能率の低下、形状精度の劣化そして廃液の排出による環境汚 染などが問題となっている.また、今後ますます重要になる非球面 や自由曲面などの曲面形状および微細形状の修復が困難である.

Top-down melting a-Si Dislocations Dislocation motion (a) Laser pulse on 図2 平滑表面のレーザ修復原理

そこで、本研究では、ダメージ層除去の代わりに、ナノ秒パ ルスレーザ照射によるダメージの完全修復技術を提案する.図1 に加工ダメージ層のレーザ修復の概略を示す. すなわち, 加工 表面に超短パルスレーザを走査しながら照射することにより加 工ダメージ層を工作物のバルク部分と同様な結晶組織に回復さ せる方法である.図2に、平滑表面(例えば超精密切削面)の ダメージ修復モデルを示す. すなわち, ダメージ層のある Si ウ エハ表面にナノ秒パルスレーザを照射すると、ダメージ層部分 のレーザ 吸収率がバルク領域より高くなっているため、ダメー ジ層が瞬間的に溶融する (a). その後無転位のバルク領域を種と してナノ秒速で液相エピタキシャル結晶成長させる (b) ことで、 加工ダメージを完全な単結晶に修復する.本研究では、これま での超精密切削面への単発照射の成果1)を踏まえて、ナノ秒パル スレーザを高速多軸移動機構へ搭載し、研削加工された表面凹 凸の多い Si ウエハにレーザ照射を行う. 加工ダメージ層を完全 な単結晶構造に修復すると同時に、ウエハ表面の研削痕をナノ メートルレベルに平坦化させる技術を開発する. 図 3 に示すよ うに、Si 表層が溶融する際に表面張力が発生する. この表面張 力を利用して、ダメージ修復が行われると同時に、ウエハ表面 の研削条痕を平滑化させることが可能である. このように、表 面の無欠陥化と平滑化を同時に達成させることで、全く新しい 単結晶基板の製造方法が実現できると考えられる.

2. 実験方法

2.1 レーザ照射装置

実験には2種類のNd:YAG レーザを使用した.1つは単発照射 用の低周波 Nd:YAG レーザ(New Wave Research 社製, QuickLaze-50)である. 波長は 1064, 532, 355 nm の 3 種類が選 択可能で,最大 50 Hz でパルス照射が可能である.パルス幅は 34 ns である. 照射痕のサイズは焦点において 60 µm 角まで拡大 が可能であり、照射範囲内でエネルギ密度はほぼ均一となって いる.もう1つのレーザ発振器は大面積照射用の高周波 Nd:YAG レーザ(メガオプト社製, LR-SHG)である. LD 励起固体レーザで あり, 波長は532 nm である. 出力はLD 電流値とパルス周波数 で変化するが、1kHzで1W以上の出力が可能である.パルス幅 は約25 ns である. ビーム径は出射口付近で約600 µm で, そこ からビーム拡がり角 2mrad(全角)で拡がっていく. レーザの強度 分布はガウス分布である. レーザエネルギ密度が照射結果に大 きな影響を及ぼすと考えられるため、パワーメータとビームプ ロファイラを用いてレーザエネルギ密度分布を測定した. また, レーザ照射ユニットは特別に開発した4軸高速リニアステージ に取り付けられ、ステージの移動速度を調節することにより単 発照射や照射領域のオーバーラップが可能である. 図 4 は開発 したレーザ修復装置の写真である. 試料として, #8000の砥粒で 研削した Si(100) ウエハを使用した. ウエハの表面粗さは 0.002-0.003 µm Ra である. また, TEM 観察により表層部に 10-30 nmのアモルファス層が確認され、その下に転位が存在していた.

(b) 主要部図4 開発した高速レーザ修復装置

図5 顕微レーザラマン分光装置の概観

2. 2 欠陥評価方法

レーザ照射前後の Si ウエハ結晶性の評価には顕微レーザラマ ン分光光度計(日本分光(株)製, NRS-3100)を使用した.図 5は分光装置の主要部の外観写真を示すものである. 測定用のレ ーザの波長は532 nm, スポット径は1 µm である. 露光時間は1 秒, 積算回数は 2 回とした. Si のラマンスペクトルには主に 470cm⁻¹を中心波数としたアモルファスSiのブロードなピークと 520cm⁻¹を中心とした単結晶 Si の鋭いピークが存在する. ウエハ 結晶性の評価にはラマンピークの面積比を求める方法 2)を使用 した. すなわち, ピークが存在しない波数 600-800 cm⁻¹のスペク トル強度をベースにとり、主に単結晶 Si に起因する 515-525 cm⁻¹ のスペクトル面積を A515-525 とし、アモルファスや微結晶 Si に起因する 350-515 cm⁻¹のスペクトル面積を A350-525 とし、そ の面積の比r(ラマンスペクトル比と呼ぶことにする)を式(1) により求め、結晶性の指標とした. rの値が大きければ大きいほ ど結晶性が良いことになる. この指標で、 欠陥のないアニール ウエハのr値は0.85~0.90となる。

$$\mathbf{r} = \frac{\mathbf{A}_{515-525}}{\mathbf{A}_{515-525} + \mathbf{A}_{350-515}} \tag{1}$$

3. 研究結果

3. 1研削面ダメージの修復効果

図6に、QuickLaze-50を用いてエネルギ密度 0.30 J/cm² で照射 した表面の顕微鏡写真と照射前後のラマンスペクトル変化を示 す.写真より、照射部分の表面研削痕が一部消えており、平滑 になっていることが確認できる.ラマンスペクトルでは、照射 前に複数の相変態現象が観察されているが、照射後は単結晶 Si のみが現れている.図7に、ラマンスペクトル比rのマッピング 測定例を示す.このときの顕微鏡写真からも表面が平坦化され ている様子が確認できる.また、ラマンマッピング測定結果で は、照射全域でr値が 0.85 以上となっており、アモルファス Si が完全に単結晶化していることを示唆している.すなわち、レ ーザ照射により研削ウエハ表面のダメージ層の修復および研削 痕の平坦化が同時に実現することができた.

(b)ラマンスペクトル 図6 研削面修復前後の結晶性変化

(a) 顕微鏡写真

3.2 オーバーラップ照射による大面積修復

次に、QuickLaze-50 を用いてオーバーラップ照射を行い、境界 の結晶性を評価した. 図8は、オーバーラップ幅が2μmのとき

のSi 超精密切削面の顕微鏡写真およびラマンマッピングの一例 である.境界領域の表面形態が均一であり、結晶性にもムラが 見られない. 次に、高速照射可能な LR-SHG レーザを使用して 実験を行い、各照射痕の一部をオーバーラップさせることで大 面積照射を行った.使用したパルスエネルギは1.0 J である.照 射後、各照射痕の中心を通る線上でラマンスペクトルの測定を 行い、そのスペクトル比rの結果とその際のエネルギ密度分布の 関係を求め図9に示した. 図9(a)は単発照射の結果である. スペ クトル比rの結果より、アモルファスから単結晶化している領域 の直径が約250 µm であることが確認できる.また,その領域に おいての最低エネルギ密度が約 0.48 J/cm² であり、パルス幅が 3-4 nsのQuickLaze-50とはエネルギ密度において約0.20 J/cm²の 差が生じている. 図9(b)は照射間隔250 µm のオーバーラップ照 射の結果であり、全面においてエネルギ密度が0.48 J/cm²以上で あることから,照射全面においてアモルファスSiが確認できず, 結晶化されたと考えられる.しかし、ラマン測定では転位残存 の確認が困難であるため、最後に TEM による断面観察によって 転位を含めた結晶性評価を行った. その結果を図10に示す. (a) レーザ照射前のウエハ表面には、厚さが不均一のアモルファス 層および転位層が形成されており、研削条痕による微小凹凸が 多数存在している.(b)照射間隔が200 μm(最低エネルギ密度0.53 J/cm²)では、アモルファス相が完全に結晶化されたが、若干の 転位が残存している.したがって、転位を含めてダメージ層を 完全に修復するにはより大きな最低エネルギ密度が必要である ことがわかる.一方、(c)は照射間隔100 µm(最低エネルギ密度 0.61 J/cm²)の結果であり、アモルファスSiも転位も全く観察さ れず、ダメージ層が完全な単結晶構造に修復されている.

図8 オーバーラップ境界の結晶性評価

図9 オーバーラップ照射におけるラマンスペクトル比 とレーザエネルギ密度分布との関係

4. 結論

高周波ナノ秒Nd:YAGパルスレーザ照射を用いて研削Si ウエ ハのダメージ層の完全修復を試みた結果,以下の結論を得た. (1)使用レーザのパルス幅の差異により,アモルファスSiの 結晶化に必要なエネルギ密度が異なる.(2)高周波ナノ秒パル スレーザを用いた移動照射により,大面積のウエハ修復が可能 である.(3)移動照射時の照射痕間隔をある臨界値以下に設定 することで,ダメージ層の完全修復とウエハ表面研削条痕の平 滑化と同時に実現できる.

本提案技術は以下の特長を有している.(1)材料の除去が全 く伴わないため、機械加工で得られた基板の形状精度をそのま ま維持することができる.(2)高周波ナノパルスレーザを使用 することで短時間でのダメージ修復が可能である.(3)切りく ずや化学廃液を全く排出せず、環境に悪影響を与えることのな いクリーン技術である.(4)曲面形状工作物への適用が可能で、 局所の選択的修復や表面組織の制御も可能である.

謝辞

本研究の一部は財団法人天田金属加工機械技術振興財団平成 21 年度一般研究開発助成により行われたものであり、ここに深 く感謝の意を表す.

(a) 照射前

(b) 照射間隔 200 µm

(c) 照射間隔 100 µm

図10 レーザ照射前および照射後のウエハ断面 TEM 写真

参考文献

- J. Yan, T. Asami and T. Kuriyagawa: Response of machining-damaged single-crystalline silicon wafers to nanosecond pulsed laser irradiation, Semiconductor Science and Technology, 22, 4 (2007) 392-395.
- (2) J. Yan, T. Asami and T. Kuriyagawa: Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy, Precision Engineering, 32 (2008) 186-195.