球状黒鉛鋳鉄と低合金鋼のレーザ接合に関する研究

仙台高等専門学校 材料工学科

教授 柴田公博

(平成 21 年度一般研究開発助成 AF-2009205)

キーワード:レーザ溶接 接合界面 接合強度

1. 研究の目的と背景

近年、石油資源の枯渇や地球温暖化の問題から、自動車をはじ めとする輸送機関の低燃費化が求められている。低燃費化の手段 として軽量化が有効であることから、軽量材料の適用や軽量構造 への代替のための技術開発が行われている。自動車などの駆動系 部品は高強度を要求されるため強靭な鋼や鋳鉄などが用いられて おり、塑性加工や鋳造によって作られた部品が、ボルト締結構造 によって組み立てられる方法が取られている。しかしながら、こ れまでの機械的締結方法では十分な軽量化が図れないため、溶接 による締結構造に代替することにより軽量化を図ることが検討さ れている^{1)、2)}。 しかしながら鋳鉄と鋼の溶接では、溶融凝固部 およびその周辺でおこる相変態により生成する脆性な組織や、熱 膨張や収縮に伴い発生する応力のために、割れが発生しやすいこ とから、技術的に解決すべき課題が少なくない³⁾。

本研究は、近年開発された高輝度の高出力レーザを用いて、鋳 鉄と鋼を健全に溶融接合する技術の研究開発を行うもので、本技 術を輸送機器の駆動系部品に代表されるような、塑性加工された 鋼部品と鋳鉄部品の締結に適用することで、軽量化・低燃費化に 貢献する技術を創出することを目的とする。具体的には、パーラ イト球状黒鉛鋳鉄と低合金炭素鋼からなるディファレンシャルギ ヤを試料とし、ビームクオリティの優れる炭酸ガスレーザを用い て熱影響部を出来るだけ少なくし、同時に接合部にフィラーを添 加することにより、溶融部の組成をコントロールし、脆弱な組織 の生成を抑えることにより、この異種材溶接の技術的な課題を解 決しようとするものである。

2. 研究方法

球状黒鉛鋳鉄(FCD600)と低炭素合金鋼(SCM418H)からなる ギヤ試料の接合部に図1に示すような開先を設け、Ni合金フ ィラーワイヤー(JIS Y308)を供給しながら、表1に示す溶接 条件にてレーザ溶接を行った。図2は溶接したギヤ試料の外 観写真を示す。

図1 試料接合部の形状

表1 溶接条件

溶接条件				
レーザ加工機器		炭酸ガスレーザ (三菱6050)		
溶接速度(m/min)		10		
レーザ出力	設定値(kW)	3.1		
	加工点(kW)	2.54		
シールドガス	種類	Arガス		
	流量(L/min)	20		
溶接ワイヤ	供給速度 (m/min)	2.06		

図2 溶接されたディファレンシャルギヤ試料

溶融部への鋳鉄の溶け込み量の影響を調べるためにレーザ照 射位置を開先中央狙い、鋳鉄寄りに0.2mm および0.3mm、同じ く鋼寄りに0.2mm および0.3mm 変動させて実験を行った。接 合部の組織は光学顕微鏡により観察した。組織の詳細な観察 には透過電子顕微鏡および後方散乱電子解析パターン(EBSP 法)を用いた。マイクロビッカースによる硬度測定を図1に示 す位置で行った。また、EPMAによるC量およびNi量の測定も 同じ位置で行った。測定されたNi量からワイヤ希釈率を推定 した。また、マクロ写真より溶融部面積の測定を行った。

接合部の強度評価は、ギヤ試料から切り出した微小引張試験 片にて行った。図3にギヤ試料の接合部の断面写真を、図4に 接合部から放電加工により切り出した試験片形状を示す。 応力解析には汎用ソフトANSYS^{4)、5)}を用いた。材料物性値お よび試験片形状を用い3Dモデルを作成し、破断荷重、破断ス トロークを用いて引張方向応力・ひずみエネルギを求めた。

図3 ギヤ試料の溶接部断面写真

図4 引張試験片形状

3. 研究成果

3・1 溶融部の組織観察

溶接実験の結果、レーザ照射位置が鋳鉄寄り 0.3 mmの試料 では溶接部上部に割れが発生した。図5に割れを示す。溶接

図5 発生した割れ (a)カラーチェック (b)断面ミクロ組織

方向に垂直にビード表面に発生した横割れであった。図5(b) より割れはオーステナイトデンドライト間に発生していた。

図6にレーザ照射位置が中央狙いの試料のマクロ組織を示 す。組織中央部にみられる黒い部分はNi合金ワイヤと鋳鉄お よび鋼が溶け合ってできた溶融部である。その両側に熱影響 部が存在した。鋳鉄側の溶融部ミクロ組織は図7(a)のように 黒鉛周辺にレデブライト共晶組織が黒鉛をとりまくように生 成する特徴的な組織⁶⁾となった。またレデブライトの外側に 高炭素のマルテンサイト組織が形成された。図7(b)に示すよ うにSCM側では熱影響部にマルテンサイト組織が観察された。 溶融部のオーステナイトとマルテンサイトの境界部は溶融時 に液相と固相が混在した組織が見られた。図6及び図7と同 様のマクロ・ミクロ組織はすべての試料で観察された。

図6 溶融部マクロ組織

図7 溶接部のミクロ組織 (a) 鋳鉄側(b) 鋼側

続いて図7(a)の□で囲むミクロ組織を詳細に観察するため、 EBSP分析および透過電子顕微鏡による観察を行った。図8に EBSP分析の結果を示す。図8(b)に示すフェーズマップにおい て、赤色の相はマルテンサイト相、青色の相は残留オーステ

(a) Band contrast map

(b) Phase map

(c) Inverse pole figure(X方向)図 8 EBSP 結果

ナイト相、黄色の相はFe3C相と推定される。観察範囲 内に占める割合はそれぞれ 29%、9%、61%であった。

図9は透過電子顕微鏡像およびその回折パターンを 示す。回折パターンより、マルテンサイト、セメンタイ ト、オーステナイトであることが確認された。このこと より、鋳鉄側溶融部は、レデブライト共晶、残留オース テナイトを含むマルテンサイト、セメンタイトからなる 特徴的な組織を示す。

20k-1.tif Print Mag: 40100x @ 203 nm TEM Mode: Imaging

500 nm HV=200kV Direct Mag: 20000x

(a) 透過電子顕微鏡像

(b) 555 位置からの回折パターン

(c) 557 位置からの回折パターン

(d) 560 位置からの回折パターン図 9 透過電子顕微鏡像及び回折パターン

3・2 硬度、溶融面積、C量及びワイヤ希釈率

レーザ照射位置を変動させた試料における割れの有 無を溶融部の硬度、溶融面積、C量、ワイヤ(Ni)希釈率 と共に表2にまとめる。

試料	1	2	3
レーザ照射	市血畑い	鋳鉄寄り	鋼寄り
位置	中天祖い	O.3mm	0.3mm

表2 硬度、溶融面積、C量及びワイヤ希釈率

位置	1 20 20 0	0.3mm	0.3mm
Ni量(%)	10	10	10
レーザ出力 (kW)	2.54	2.54	2.54
硬度(Hv0.3)	293	456	340
溶融面積 (mm ²)	5.34	6.26	6.00
C量(質量%)	2.81	4.19	2.01
ワイヤ(Ni) 希釈率(%)	79.1	81.1	80.2
割れ	無	有	無

中央狙い、鋳鉄寄り0.3mm、鋼寄り0.3mmの3つのレ ーザ照射位置を比較した。図5で割れが観察されたギヤ 試料はレーザビームを鋳鉄寄り0.3mmに照射した試料 である。割れは最終凝固部に発生した。この試料では硬 度、溶融面積、C量、ワイヤ希釈率すべてが中央狙いあ るいは鋼寄り試料よりも高くなっており、鋳鉄がより多 く溶け込んだことが分かる。このことにより靱性が低下 したことが割れの一因といえる。レーザビームを鋳鉄寄 り0.2mmに照射した試料では、同様の割れが発生してい ないことから、溶接方向に垂直の割れの発生は鋳鉄の溶 け込み量に依存することが推定される。

3・3 微小引張試験片を用いた接合部強度評価

レーザ照射位置を開先中央部、鋳鉄寄りに 0.2mm、鋼 寄りに 0.2mm ずらした 3 種類のギヤ試料より図4 に示 す微小引張試験片をそれぞれ 3 体ずつ切り出し、島津オ ートグラフにて引張試験を行った。 試験片にはいずれ も初期亀裂が存在しなかった。図10に引張試験後の破 断した試験片の写真を示す。すべての試料は鋳鉄側溶融 部界面近傍で破断した。図11に破断荷重を示す。レー ザ照射位置を鋳鉄側にずらした試料は、他の2 種類の試 料に比べて最も破断荷重が低い値となった。これはレー ザ照射位置を鋳鉄側にずらすことにより、より多くの鋳 鉄が溶け込んだことに関係する。球状黒鉛の周りにレデ ブライト共晶組織が生成することはすでに確認したが、 レデブライト共晶組織が多く集まると割れが発生しや すくなる。鋳鉄が多く溶け込むとその分だけ炭素濃度が 高くなり、レデブライト共晶組織が多く生成される。こ のことから、レーザ照射位置を鋳鉄寄りにずらした試料 はより低い荷重で破断したと考えられる。

図10 引張試料の破断箇所

引張試験片にかかる応力を解析するために、歯車から切 り出した試験片を基に、汎用構造解析ソフトウェア ANSYS^{4)、5)}により三次元モデルを作製した。

図12三次元モデルの要素分け

図12に示すように作製したモデルを鋳鉄、溶接部(Ni)、 鋼の3つの要素に分け、表3に示す材料特性値を用いて 解析した。

表3 計算に用いた物性値

要素	ポアソン比	ヤング率(Gpa)
鋳鉄	0.285	145.5
Niフィラーワイヤ	0.29	41.46
金周	0.276	196.5

図13にANSYSによる解析結果の例を示す。この図は三 次元モデルにかかっている応力分布を示している。青色 の箇所の応力が低く、赤色に近づくにつれて高い応力が かかっていることを示す。解析結果より溶接部周辺、特 に溶接部底部(モデル右側)に高い応力がかかっている ことが分かる。この結果から試験片の溶接部底部から発 生した亀裂が、鋳鉄側溶融部界面および熱影響部を伝搬 し破断に至ったと考えられる。

4.結論

球状黒鉛鋳鉄(FCD600)と低炭素合金鋼(SCM418H)を Ni 合金フィラーワイヤー(JIS Y308)を供給しながらレ ーザ溶接したギヤ試料の接合部の組織および強度特性 を調べた結果、以下のことを明らかにした。

(1) 溶融部中央はNi合金ワイヤと鋳鉄および鋼が溶け合ってできたオーステナイト相が存在し、その両側の鋼側は溶融時に液相と固相が混在した組織、その外側に熱影響部が存在した。また、鋳鉄側の

溶融部ミクロ組織は黒鉛周辺にレデブライト共晶 組織が黒鉛をとりまくように生成する特徴的な組 織となった。またレデブライトの外側に高炭素の マルテンサイトが形成され、残留オーステナイト が存在している。

- (2) レーザ照射位置が鋳鉄側にずれると、鋳鉄の溶融 体積が増えるため、溶融部面積が増加し、接合部 最終凝固部に溶接方向に垂直方向に割れが発生した。
- (3) レーザ溶接部の引張試験結果および有限要素解析から、破断は全て溶接部底部鋳鉄側から発生し、 鋳鉄側の界面に沿って亀裂が進行し、破断すると 考えられる。
- (4) 適切な溶接条件を選ぶことにより、レーザ溶接に よる健全な鋼と鋳鉄の溶接体を得ることが可能で ある。

謝辞

本研究は、天田金属加工機械技術振興財団の一般研究開 発助成により遂行された。ここに記して深甚な感謝の意 を表します。また、研究の遂行にあたり、試料製作など で多大な協力をいただきました日産自動車株式会社、 (株)日産アークに、また実験で多大な協力をいただき ました仙台高等専門学校准教授熊谷進氏、当時の仙台高 等専門学校生宮下仁氏、菅井進也氏、星野真理氏、紺野 崇聡氏に感謝いたします。

参考文献

- T. Angerer, Laser Welding of Axle Gears, Proceedings of Stuttgarter Lasertage, (March. 4, 2008, Stuttgart)
- 2) 例えば 特許出願公表番号 2007 508145
- (二熊、副島著、鋳鋼・鋳鉄溶接のかんどころ(溶接 技術シリーズ12、産報出版)
- 4)「ANSYS 入門セミナー」サイバネット株式会社 発行 2004 年
- 5)「ANSYS 中級セミナー」サイバネット株式会社 発行 2004 年
- 6) M. Hatate et.al., Vacuum 73(2004)667-671