インサート材を用いたレーザ接合技術の開発

岡山理科大学工学部 機械システム工学科 教授 金谷輝人(平成 21 年度一般研究開発助成 AF-2009203)

キーワード:レーザ接合、インサート材、異種材料

1. 研究の目的と背景

自動車を中心とした輸送機器産業では、CO₂削減のため、 部材の軽量化が切望されており、軽量、加工性などに優れ たアルミニウム合金の適用が拡大している¹⁾。プラスチッ ク材料も軽量で成形性に優れていることから、その適用範 囲は拡大しており、それに伴い、プラスチックへの接合技 術の重要性が増している。

近年、プラスチック同士の新たな接合法として波長が1 μm付近のレーザ光がプラスチックを透過する性質を利 用したレーザ溶着法が開発され²⁾、既存の熱板、振動、超 音波などの溶着法よりも生産性および接合品質が優れて いることから、実用化が進んでいる³⁾。

一方、プラスチックー金属異種材料接合では、被接合材 間の物性差が大きいことから、前述のレーザ溶着法による 接合が困難であり、一般に接着剤や機械的締結が用いられ ている。これらのプロセスでは、揮発性有機化合物 (VOC) の発生、あるいは作業面とコスト面の負担が大きいなどの 問題があり、それらを改善する代替工法が強く要望されて いる。最近、レーザによるプラスチックー金属異種材料間 での接合が試みられ、極性の強い PET など一部のプラスチ ック-金属間での接合例が報告されている⁴⁾。著者らもプ ラスチックー金属異種材料接合に対して被接合材間の物 性差を緩和させるインサート材を用いることでレーザ接 合が可能なことを報告した^{5)、6)}。また、分子の一部を-COOH 基で変性することによって極性を付与したインサー ト材を適用することで、これまで困難であった無極性のプ ラスチックが塑性変形するほどの強固な接合が得られる ことを報告した7)。その際、アルミニウム基材の表面状態 が接合強度に著しく影響を及ぼすことを示したが、その詳 細には不明な点も多い。さらにアンカ効果で知られる表面 形状は接着性に多大な影響を及ぼす。

この研究では、インサート材を用いた半導体レーザによ るアルミニウム板材-ポリプロピレン樹脂異材接合にお ける接合メカニズムの解明を目的として、接合強度に及ぼ すアルミニウム板材の表面形状の影響および酸・アルカリ 処理による表面の化学状態の影響について詳しく検討し た。

2. 実験方法

被接合材として、主に1050 アルミニウム板材(30×20×1(厚さ)mm³)(以下、1050 と記す)およびポリプロピレン樹脂(新神戸電機(株)製コウベポリシート(50×25×2(厚さ)mm³)(以下、PPと記す。))を用いた。接合強度に及ぼす1050の表面形状の影響を調べるため、1050の接合表面に対してTable1に示す研磨を行い、表面形状の異なる4種類の試料を作製した。なお、研磨後、アセトンによる超音波洗浄を60秒間実施した。研磨試料の表面について、SEM観察および非接触式三次元構造解析顕微鏡(Zygo New Vie 5000)による表面形状測定を行い、算術平均粗さ(Ra)および表面積(I Surf Area)を求めた。また、接

(Na) および表面積(I Surl Area) を求めた。また、接 合強度に及ぼす 1050 表面の化学状態の影響を調べるため、 バフ研磨による鏡面状態の試料に対して、Table 2 に示す 化学処理を行った。化学処理後の表面について、X 線光電 子分光装置(以下、XPS と記す)による状態分析を行った。

被接合材の間にインサート材を挟み込み、Table 3 に示 す条件でレーザ接合を行った。熱源には半導体レーザ (Laser Line 社製LDF600-1000:最大出力1kW)を用いた。 インサート材にはスチレン系熱可塑性エラストマをシー ト状に加工したもの(厚さ50 µ m)を用いた。なお、熱可 塑性エラストマの特徴として、分子中に柔軟性成分(軟質

#220	#1200	#4000	Mirror buffing
Substrate ↓ #220	Substrate ↓ #220 ↓ #800 ↓ #1200	Substrate ↓ #220 ↓ #800 ↓ #1200 ↓ #4000	Substrate \downarrow #220 \downarrow #800 \downarrow #1200 \downarrow #4000 \downarrow Mirror buffing

Table 1 Various polishing conditions for 1050 aluminum substrate.

Table 2 Chemical treatments for 1050 aluminum substrate after mirror buffing.

Alkaline dipping	Acid dipping	Second alkaline dipping
$(Na_2CO_3 (20 \text{ kg/m}^3) + Na_2SiO_3 (10 \text{ kg/m}^3) (325 \text{ K-}30 \text{ s}) \\ \downarrow \\ Washing$	Alkaline dipping ↓ Washing ↓ Nitric acid (60%) (Room temperature-5 s) ↓ Washing	Acid dipping ↓ Washing ↓ Alkaline dipping ↓ Washing

Table 3 Experimental conditions of laser joining.

-	a state of the second sec		
	Wavelength (nm)	808	
	Focusing distance (mm)	100	
	Spot diameter (μm)	600	
	Defocusing distance (mm)	12	
	Exposure mode	CW	
	Exposure angle	80° for the joining material	
	Laser power (W)	200	
	Joining Speed (mm/s)	5	

相)と塑性変形を防止するための分子拘束成分(硬質相) を有するため、加硫なしでも加硫ゴムと同様の弾性を示す。 また、加熱により可塑化するが、冷却されることで再固化 し、補強なしでも高強度ならびに高引張応力を示す。本研 究では、アルミニウムとの接合性を高めるため、分子の一 部を-COOH 基で変性し、レーザ吸収材を 1mass%添加したイ ンサート材(レーザ波長 808nm に対する吸収率:95%)を 用いた⁶⁾。

レーザ照射後、表面および断面方向から接合状況を観察 した。また、せん断試験によって接合強度を求めた。せん 断試験後、剥離面の外観観察および電界放射型X線マイク ロアナライザ(以下、FE-EPMAと記す)による元素分析を 行い、剥離モードを調べた。

3. 結果および考察

3.1 接合強度に及ぼす表面形状の影響

Fig.1には、1050に対して Table 1 に示した研磨を施し た表面の二次電子像および非接触式三次元構造解析顕微 鏡による表面形状を示す。エメリー紙#220番による研磨 では、表面に多数の研磨傷が観察されるが、#1200、#4000 へと研磨することで大部分の研磨傷は消滅し、最終のバフ 研磨によって完全に除去され、外観的にも鏡面状態を示し た。Table 4 には、各研磨表面について、非接触式三次元 構造解析顕微鏡によって求めた表面粗さ Ra(算術平均粗 さ)を示す。表面粗さ Ra 値は、#220から#4000へと研 磨することで低下し、バフ研磨では 0.063 µm まで低下し ており、研磨を順次行うことで平滑化されることが定量的 に確認できる。

Fig. 1 Secondary electron images and surface morphology
of specimens showing various polished surface on 1050
aluminum substrate. (a) #220, (b) #1200, (c) #4000,
(d)Mirror buffing.

Table 4 Surface roughness (Ra) of various polishing for 1050 aluminum substrate.

	#220	#1200	#4000	Mirror buffing
Ra (µm)	0.420	0.192	0.145	0.063

このように表面粗さRaが異なる4種類の試料に対して、 インサート材を挟み込みレーザ接合を行い、せん断試験に よって接合強度を求めた。Fig.2には、Table 1に示した 表面粗さRaとレーザ接合によって得られたせん断強度の 関係を示す。せん断強度は、表面粗さRaの値によって変 化するが、表面粗さRaとせん断強度の間には相関が認め られない。特に、Ra値が0.420µmと最も粗い#220番の 試料でのせん断強度が、約1/3のRa値を示す平滑な#4000 番の試料のそれよりも低い結果は、本プロセスでの接合強 度には表面粗さ以外の因子の存在が示唆される。

Fig.3には、非接触式三次元構造解析顕微鏡から求めた 表面積(ISurfArea)とせん断強度の関係を示す。なお、 最も表面の粗い#220番の試料の表面積がすべての試料 の中で最小値を示しているが、これは#220番の表面凹凸 が激しいために表面積を算出する際のデータ欠損率が 58%と、他の試料の1%未満に比べ、非常に大きいことに よる。

Fig. 2 Relationships between surface roughness and shear strength.

Fig.3 Relationships between surface area and shear strength.

#220番の試料を除き、表面積の増加とともにせん断強

度が増加し、両者には比例関係が成立する。このことから、 本プロセスでの接合強度に対して、表面粗さではなく、表 面積が重要な因子であることがわかった。なお、#220番 の試料のせん断強度が表面積と相関しない要因について は後述する。

3.2 接合界面の状態

Fig.4には、#220番の試料を除いた接合部の断面観察 結果を示す。PP-インサート材の界面には気泡や未接合部 は認められず、すべての試料で良好な接合界面が形成され ている。また、1050-インサート材の界面についても、同 様に気泡や未接合部は認められない。

Fig. 4 Cross sectional backscattered electron images of laser joining specimens with various polishing conditions.

一方、Fig.3において#220番の試料のみ表面積とせん 断強度に相関が得られなかったが、その要因を明らかにす るため、1050-インサート材の界面について、断面観察試 料をクロスセクションポリッシャにより作製し、詳細に観 察した。Fig.5には#220番および鏡面研磨についての結 果を示す。表面粗さの最も粗い#220番では、凹部におい てインサート材が完全に充填されない未接合部(Fig.5(a) 破線部)や気泡が観察された。その他の試料の接合界面に は、#220番で観察された未接合部や気泡は観察されなか った。このように#220番の試料では、凹部における未接 合部が、接合強度を低下させ、それが表面積との相関を示 さない要因と推測される。

以上、本プロセスは、アルミニウム接合面での表面積を

増加させることは接合強度に対して有効に作用する。しか し、#220番のような粗い表面研磨の場合では、本実験に 用いた熱可塑性インサート材はレーザ照射での加熱によ って流動性が増すものの、凹部まで完全に充填されず、+ 分なアンカー効果を得ることができない。このように接合

Fig. 5 Cross sectional backscattered electron images of laser joining specimens. (a) # 220 polishing, (b) Mirror buffing.

強度の向上を目的とした表面粗化は、未接合部を生じさせ、 逆に接合強度の低下を招くことから、最適な表面形状の選 択が重要である。

次に、せん断試験後の剥離面を目視観察した結果、すべ ての試料で PP-インサート材間での剥離は認められず、 1050-インサート材間で剥離が生じた。これは、スチレン 系熱可塑性エラストマを主成分としたインサート材が PP との相溶性⁸⁾を有しており、レーザ照射後、接合界面に おいて両者が溶融し、混ざり合う⁹⁾一方で、インサート 材-アルミニウム間ではインサート材のみ溶融することに 起因する。

せん断試験によってインサート材が剥離した 1050 表面 について、FE-EPMA による元素分析を行った結果、いずれ の試料からもインサート材に起因する炭素が剥離面から 検出された。この結果はインサート材の一部が凝集破壊し ていることを示しており、本プロセスでは、アルミニウム -インサート材間にその詳細は明らかではないが、何らか の結合が生じることにより、PP が塑性変形するほどの強 固な接合が得られるのではないかと思われる⁷⁰。

3.3 接合強度に及ぼす化学処理による表面状態の 影響

 Table 5 には、鏡面バフ研磨を施した 1050 に対して

 Table 3 に示す化学処理を行った試料の表面粗さ Ra およ

 び表面積 (I Surf Area) を示す。鏡面バフ研磨後の表面

粗さは Ra 0.063 μm と極めて平滑であるが、それに対して 化学処理を施すことで表面粗さ Ra は増し、表面が粗化さ れる。しかし、各処理での表面粗さ Ra および表面積(I Surf Area)には有意な差が認められないことから、最初のアル カリ処理においてアルミニウム表面はエッチングされる ものの、その後の酸処理およびアルカリ処理でのエッチン グはわずかであると言える。このようにバフ研磨後の表面 に対するアルカリ処理と酸処理後のそれに対するアルカ リ処理を比較すると、同じアルカリ処理であるにもかかわ らず、エッチング効果が大きく異なる結果は、バフ研磨と 酸処理後に生成する酸化皮膜の状態が異なることを示唆 している。

Table 5 Surface roughness (Ra) and surface area (I Surf area) of various chemical treatments for mirror buffing substrate.

n ng di 'sara	No treatment	Alkaline dipping	Acid dipping	Second alkaline dipping
Surface roughness, Ra (µm)	0.063	0.219	0.214	0.207
Surface area (mm ²)	0.016	1.548	1.540	1.540

Table 6 には、各処理を施した試料のせん断強度を示す。 せん断強度は、最初のアルカリ処理によって鏡面バフ研磨 試料よりも向上し、続く酸処理により、さらに向上した。 しかし、再びアルカリ処理を施した試料のせん断強度は、 鏡面バフ研磨試料のそれよりも低下した。Table 5 に示し た表面粗さおよび表面積から、各処理による表面形状に大 きな差異はないが、一方、せん断強度が各処理によって異 なる結果は、本プロセスの接合強度に影響を及ぼす要因と して、表面形状のほかにも表面の化学状態が考えられる。 なお、表面凹凸が激しいために未接合部が存在する#220 番の試料を除き、化学処理によるせん断強度は、前述の鏡 面研磨試料と同様の傾向を示した。

Table 6 Shear strength of various chemical treatments for 1050 aluminum substrate.

No treatment	Alkaline dipping	Acid dipping	Second alkaline dipping
936.7	1023.0	1122.3	847.7
	No treatment 936.7	No treatment Alkaline dipping 936.7 1023.0	No treatment Alkaline dipping Acid dipping 936.7 1023.0 1122.3

Fig.6には、鏡面バフ研磨および各処理を施した試料表 面の XPS による Al3p1/2 ナロースペクトルを示す。いずれ の試料からも金属および酸化状態の存在を示すピークが 認められるが、これら金属および酸化状態のピークの割合 は、各処理によって変化していることがわかる。この結果 は、最表面の化学状態がそれぞれ異なっていることを示唆 している。

Fig. 6 XPS Al3p1/2 narrow spectra of 1050 aluminum substrates after various chemical treatments. (a) No treatment, (b) alkaline dipping, (c) acid dipping, (d) second alkaline dipping.

Fig. 6 から求めた各処理におけるアルミニウムの金属 および酸化状態の組成比を Table 7 に示す。ここで金属状 態の比率に着目すると、せん断強度が最も高い値を示した 酸処理試料での金属状態の比率は、すべての試料の中で最 も高く、逆にせん断強度の最も低い2回目のアルカリ処理 のそれは最も低い値を示し、せん断強度と金属状態の比率 は相関を示すことがわかった。

本実験に用いたインサート材は、-COOH 基変性によって 極性を付与することで金属-インサート材間での反応性の 向上を図っている。アルミニウム表面へのアルカリおよび 酸処理による表面の化学状態の差異が接合強度を変化さ せる、すなわちインサート材との反応性に影響を及ぼす結 果から、その両者間には酸-塩基相互作用¹⁰が関与して いることが予想される。酸-塩基相互作用を明確にするた

Table 7 Composition ratio of Al (Metal) and Al (Oxide) from Al3p1/2 spectra.

	No treatment	Alkaline dipping	Acid dipping	Second alkaline dipping
Al (Metal)	25.8	27.3	45.7	18.6
Al (Oxide)	74.2	72.7	54.3	81.4

め、-COOH 基と相反する塩基性官能基である-NH₂基によっ て変性インサート材を作製し、同様のレーザ接合を行い、 せん断強度を測定した。なお、1050の接合表面はロール 面を用い、研磨加工は行っていない。結果をFig.7に示し たが、-COOH 基変性および-NH₂基変性インサート材のせん 断強度を比較すると、絶対値は異なるものの、酸処理によ るせん断強度が最も高く、両者の各処理によるせん断強度 は同様の傾向を示した。この結果は、酸-塩基相互作用よ りも別の接合機構が作用していることを示唆している。

Fig. 7 Shear strength of various chemical treatments for 1050 aluminum substrate. (a) (a) No treatment, (b) alkaline dipping, (c) acid dipping, (d) second alkaline dipping.

一般に金属材料に対する接着剤は、その分子中に OH 基、 -COOH 基および-NH₂基などの有機官能基を有しており、金 属表面に存在する水素基と有機官能基間での水素結合に 基づく相互作用力によって接着剤が金属表面に強固に固 定化される¹⁰⁾。Fig.7 での-COOH 基および-NH₂基が各処理 で同じ傾向を示す結果は、アルミニウム表面に存在する水 素基とインサート材に付与した-COOH 基あるいは-NH₂基間 で水素結合が生じていることを示唆している。ちなみに、 -COOH 基あるいは-NH₂基未変性のインサート材を用いた場 合、表面形状や化学的処理を変化させてもアルミニウム-インサート材間で反応は生じず、結合できない。この結果 は、前述の水素結合を支持している。なお、Fig.6 の XPS 分析結果で明らかになった各処理での酸化状態の差異が、 最表面に生成する水酸化物に影響を及ぼし、せん断強度を 変化させると推測される。

以上、本プロセスでの接合性に対して表面の化学状態が 重要な因子であることが判明した。他方、接合性には表面 形状も影響するが、接合性の向上を図るためにはアルミニ ウム表面の形状制御とともに科学的な処理による表面の 化学状態の制御も重要と言える。特にレーザ接合では、フ ァイバ伝送+ロボットにより、複雑形状部位に適用できる という大きな特徴を有している。これら複雑形状部品の接 合表面に対して、科学的な処理の方が研磨等による機械的 な処理よりも容易で効率的な前処理と思われる。

4. まとめ

インサート材を用いた半導体レーザによるアルミニウ ム合金板材-ポリプロピレン樹脂異材接合における接合 強度に及ぼすアルミニウム表面の形状の影響および表面 の化学状態の影響について検討し、以下の諸点が明らかに なった。

(1) 接合面でのアルミニウムの表面積の増大は、接合 強度に対して有効に作用した。しかし、表面研磨が粗く、 凹凸の大きな表面では、インサート材が凹部まで完全に充 填されず、接合強度は低下することがわかった。そのため、 本プロセスでは、最適な表面形状の選択が重要である。

(2) アルミニウムの表面に対するアルカリ処理あるは 酸処理によって接合強度が変化し、この傾向は-COOH 基あ るいは-NH₂基変性したインサート材でも同様であった。し たがってアルミニウム-インサート材間の接合は、酸-塩基 相互作用よりも水素結合が支配的で、その際、表面の酸化 状態、特に水酸基の状態が水素結合に影響を及ぼし、接合 強度を変化させると推測した。

謝辞

本研究は、財団法人天田金属加工機械技術振興財団の一般 研究開発助成(AF-2009203)のもとで行われたことを記 し、ここに深く感謝申し上げます。また、共同研究いただ いた岡山県工業技術センター 水戸岡豊、日野実、村上浩 二の諸氏に深謝致します。

参考文献

- 1) 堀川宏: 軽金属, 58 (2008), 259-273.
- 2) 三瓶和久:レーザ加工学会誌,14 (2007),211-215.
- 長谷川達也監修:レーザー樹脂溶着技術ノウハウ集, 技術情報協会,(2009),292.
- Y. Kawahito and S. Katayama : Smart Processing Technology, 2 (2008), 19-22.
- 5) 水戸岡豊, 永田員也, 日野実: 特願 2006-177613.
- 6) 水戸岡豊,日野実,浦上和人:レーザ加工学会誌,15 (2008),186-190.
- 7)日野実,水戸岡豊,浦上和人,高田潤,金谷輝人:軽 金属,59 (2009),236-240.
- 8) 接着ハンドブック第4版(日本接着学会編集),日刊工 業新聞社,(2009),136-138.
- 9)日野実,水戸岡豊,浦上和人,高田潤:レーザ加工学 会誌,16 (2009),136-140.
- 10) 接着ハンドブック第4版(日本接着学会編集),日刊工業新聞社,(2009),836-840.