金属ナノペーストを用いた Mg 合金薄板材の

レーザ溶接技術の開発と応用

茨城大学 工学部附属超塑性工学研究センター 教授 前川克廣(平成 21 年度一般研究開発助成 AF-2009201)

キーワード:マグネシウム合金薄板,Nd:YAG レーザ溶接,金属ナノ粒子ペースト

研究の目的と背景

軽金属の一種であるマグネシウム (Mg) は,その比重 が 1.738 g/cm³とアルミニウム (Al) の 2/3 以下で,引張 強さは 160~310 MPa と,工業的に利用可能な金属の中 で最も高い比強度および比剛性特性を有している¹⁾.ま た材料の再溶解や精錬に必要なエネルギーが小さく,リ サイクル性に優れている.

近年では、Mg に様々な元素を添加した Mg 合金の開発 が進みその需要が拡大している. 例えば引張強さ 300 MPa 前後,伸び 10%前後に加工特性を向上させた Mg-ア ルミニウム (Al) - 亜鉛 (Zn) 系の Mg 合金は,自動車や パソコン,携帯電話などの工業製品に利用されている²⁾.

このような工業製品は, Mg や Mg 合金板材の穴あけや 切断, 接着・溶接加工を施すことで生産される. 一般に,

接着を行う Mg や Mg 合金の二次加工技術には, MIG (Metal Insert Gas)溶接や TIG (Tungsten Insert Gas)溶 接のほか、レーザ溶接^{3,4)}や、レーザ溶接と TIG 溶接を 組み合わせたハイブリットレーザ-TIG 溶接⁵⁾などがあり、 特にレーザ溶接は、比較的安定なビードが得られ、Mg や Mg 合金薄板材のための溶接技術として期待されてい る.しかしながら、Mg や Mg 合金の持つ高い燃焼性や酸 /塩素環境下での低耐食性は、塑性加工を困難にする.ま た Mg, Mg 合金の脆性特性は、溶接部位へのボイドやミ クロ/マイクロクラック形成のほか、金属間化合物形成 を促すため、それらに伴う継手効率の低下が、Mg/Mg 合金溶接時の技術課題となっている.

そこで、これらの課題を少しでも改善するため、被溶 接板材の間に中間材 (インサート材)を導入する研究が 盛んに行われている。例えば、インサート金属として銀 (Ag)箔(t=0.1 mm)を用いて、AZ31B 展伸材(t=0.9 mm) と1050アルミニウム材(t=0.9 mm)の異種金属材料の抵 抗スポット溶接では、インサート材を用いない場合と比 較して十字引張荷重が1.5 倍に増加している⁶.

一方,今後のデバイスの小型・軽量化,材料節約・省 資源化等の観点から,板厚1mm以下のMg合金材やそ の溶接技術に対する需要が高まっている.しかしながら, 薄板材の溶接においては,上記の課題に加え,溶接部位 の予期せぬ溶融や材料の切断現象も課題となる.

本研究課題では, Mg-Al-Zn 系 Mg 合金 (AZ31B) 薄板 材 (t=0.6 mm 以下) を被加工材料とするレーザ溶接技術 に、中間材の概念を適用する.このような Mg 合金薄板 材のレーザ溶接技術への、インサート材適用例はほとん ど報告されていない.

一般に、Mg 合金板材のインサート材としては、抵抗 溶接の Ag や SUS 箔、MIG・TIG 溶接の溶加棒などがあ り、インサート材の発熱や溶融による溶接特性の改善が 狙いである.本研究では、金属ナノ粒子ペーストをイン サート材として用いる.たとえば、平均粒子サイズ 5 nm の Ag ナノ粒子ペーストの焼成開始温度は、約 220℃と Mg 基板の融点より低く、最初に Ag ナノ粒子の焼成が開 始⁷⁾し、微細配線⁸⁾や機能性膜形成⁹⁾への利用が提案さ れている.このようにインサート材の適用による金属板 間のギャップ改善効果や、ナノ粒子の焼結温度特性がも たらすエネルギー伝播損失抑制効果によって、溶接時の 溶込み深さの増加や、アンダーカットの抑制、クラック 減少などの効果が期待できる.

本助成研究では、インサート材として Ag ナノ粒子ペ ーストを用い、低エネルギー溶接やそれに伴うビード安 定性、走査速度などの溶接パラメータ領域の拡大した、 高安定性の Mg 合金薄板材(板厚 0.6 mm 以下)のレーザ 溶接技術の開発を目指す.具体的には、金属ナノペース トの選定と塗布条件の最適化、Ag ナノペーストを用いた Mg 合金薄板材の溶接パラメータの確立や、Mg 合金薄板 材の強度試験と溶接メカニズムの解明を目指す.

2. 実験方法

本研究では、今後のデバイスの小型・軽量化に用いら れると期待される、Mg-Al-Zn 系 Mg 合金(AZ31B) 薄板 材(ファクト株式会社、20 mm×30 mm×t0.3 mm)を使 用した.表1に実験に使用した材料とその特性を示す.

インサート材としては,まず Mg を基本とする元素か らなる金属ナノ粒子ペーストを準備した. Mg は酸化し やすく,ナノ粒子の作製が不可能であるために酸化マグ ネシウムナノ粒子(MgO, Alfa Aesar 社製,粒径 100 nm 以下)を用いた.この粉末を,高分子バインダ(エチル セルロース),エタノールを主成分とする溶媒と混合して 2 種類のペーストを作製した.このときのペースト中の 金属粉末材料の割合は約 25.6 wt%とした.

一方, Mg 以外の金属ナノ粒子ペーストとして, 市販のAgナノ粒子ペースト(ハリマ化成製 NPS-J, 平均粒

径 ϕ 5 nm, およびハリマ化成製 SS-001, 平均粒径 ϕ 100 nm) を準備し, インサート材として使用した. 表 2 に, これらのペーストの物性値を示す⁷⁾. Ag の原子サイズは 2.88 Åで, Mg の原子サイズ 3.19 Åに近く, Mg への高 い固溶度を示すと考えられる¹⁰⁾. そのため, Ag は Mg や Mg 合金などの溶接時のインサート材として利用され ている.

これら金属ナノ粒子ペーストを、それぞれ表面を耐水 研磨紙(#1000)で研磨した AZ31B 薄板材上に塗布した. MgO ナノ粒子ペースト、 ϕ 100 nm の Ag ナノ粒子ペース トの場合には、マスク印刷法を用いて塗布した. 塗布膜 厚を制御するため、印刷時のマスク(スペーサー)の膜 厚を約 22,50 μ m を利用し、2 枚の AZ31B 薄板材の重ね 代である 3.6 mm をカバーする幅で塗布した. ペースト を塗布した基板は、ホットプレートを用いて仮乾燥 (100℃、1 min) を行い、ペースト中の残留溶媒を蒸発 させることで基板に定着させた.

一方、 $\phi 5 \text{ nm}$ の Ag ナノ粒子ペーストの場合には、マ スクと基板との間にペーストが入り込みマスク印刷法が 困難であったため、スピンコート法(回転数 1000, 2000, 3000 rpm×30 s)を使用した.ここで塗布膜厚は約 1~3 mm 程度しかないため、仮乾燥(100°C, 1 min)後の部 位に3,5,10回の多層塗りを行い、厚膜化によるギャッ プ改善効果を検証した.ちなみに、 $\phi 5 \text{ nm}$ の Ag ナノ粒 子ペーストの場合には、将来インクジェット印刷法も適 用できる⁹.

仮乾燥後,ペーストを塗布した面に上板となるもう1 枚の AZ31B 基板を重ね合わせた.ペーストを塗布した AZ31B 薄板を治具に固定し,横から CCD カメラで観察 しながら上板とのギャップが 35µm 以下になるよう調 整した.板間のギャップが 35µmを越えると,溶接時の エネルギー伝達,およびそれに伴うビートの溶け込み深 さなどの溶接性が悪化し,溶接欠陥増加の原因となる¹⁵⁾. また2枚の試験片の重ね代は約 3.6 mm とした.

その後,図1のように、Nd:YAG レーザ(波長 1.06 μ m,パルス幅 2.5 ~4.0 ms,繰り返し周波数 80 Hz,パル スエネルギー1.5~1.8 J)を集光照射することで溶接した. レーザ照射位置 X (mm)は、インサート材を用いない場 合の溶接に適する上側基板の縁(X=0)とした¹⁵⁾.ビー ムスポット径 d は約 0.4 mm で、強度分布トップハット 型、集光に用いたレンズの焦点距離は 100 mm であった.

サンプル基板を XY ステージ上のガスチャンバー内に 設置し, Mg の酸化を抑制するためアルゴンガス雰囲気 下(0.2 MPa) でレーザ焼結を行った.供給ガス流量は 20 L/min で,これより少ない場合には Mg の酸化現象が 観察されている. XY ステージの走査速度は 3.3~16.7 mm/s(200~1,000 mm/min) とした.焦点位置での照射 の際のオーバーラップ率 R は 73~90%となる.

レーザ溶接後の Mg 基板表面に加え,溶接部位断面の ボイドやクラックを光学顕微鏡/レーザ顕微鏡(株式会社 キーエンス製, VK-8700) で観察した.まず溶接した基 板をエタノールで洗浄後,幅5 mm間隔で4等分に切断 し,ポリエステル系樹脂(丸本ストルアス製, No.105) に埋め込んだ.その後, #800, #1000, #2400, #4000 の研磨紙で順番に研磨し,酢酸溶液(酢酸:蒸留水=10 ml:100 ml)にて約10秒間エッチングを施して最後にエ タノールで洗浄した.

図2に、測定する溶接幅と溶込み深さ、自由表面までの距離の定義を示す.溶接幅は、2枚の試験片の境界線上にある溶接部分の幅、溶込み深さは下側の基板の溶込み深さ(<300µm)、自由表面までの距離は溶接幅の一端と自由表面までの距離とした.

表1 AZ31B の化学組成

元素	Al	Zn	Mn	Mg
割合, mass%	2.63	0.71	0.28	Bal.

表 2 Ag ナノ粒子ペーストの特性⁷⁾

	型番	NPS-J	SS-001
硬	外観	濃紺色	灰色
化	粒子径,nm	3-7	100
前	金属含有率,wt%	53-58	82
	溶剤	テトラデカン	ジプロピレン
			グリコールメ
			チルエーテル
	粘度, mPa・s	7-11	1200
	焼結条件	220°C, 60 min	-
硬	外観	銀白色	銀白色
化	抵抗率, $\mu \Omega \cdot cm$	3	-
後			

図 1 レーザ溶接時のレーザ光の走査:(a) MgO ナノ粒子, φ100 nm の Ag ナノ粒子ペーストの場合,(b) φ5 nm の Ag ナノ粒子ペーストの場合

ー方で、走査型電子顕微鏡(SEM、株式会社キーエン ス製、VE-9800)による微細組織観察を行う際は、導電 性樹脂(マルトー、導電性テクノビット 5000)で埋め込 み、同様に断面を研磨した.その後ダイヤモンドペース ト(粒径 6 μ m、3 μ m、1 μ m)を用いて鏡面研磨を行い た.断面をピクリン酸溶液(トリニトロフェノール:酢 酸:蒸留水:エタノール=4 g:5 ml:10 ml:70 ml)に約 6秒間浸してエッチングを施し、エタノールで洗浄した. 研磨後の断面の電子プローブ X線マイクロアナリシス (EPMA)には、エネルギー分散型 X線(EDX、堀場製 作所製、EMAX ENERGY EX-350)を用いた.

また溶接後の継手効率を評価するため、万能試験機 (インストロン, MODEL1125/5500R)を用いて溶接後の サンプルの引張せん断試験を行った.引張せん断時の送 り速度は 0.5 mm/s の一定とした.得られた最大せん断荷 重と自由表面までの距離、サンプルの幅からせん断応力 を導きだし、母材のせん断強さと比較した.

溶接部位の硬さ試験にはマイクロビッカース硬さ試 験機(ミツトヨ製, AAV-502)を用いた. 圧子の押付け 荷重は245.2 mN, 荷重保持時間は15 s とした.

図2 溶接幅,溶接深さと自由表面までの距離

3. 実験成果及び考察

3.1 金属ナノペーストの選定

MgO ナノ粒子ペーストは粒径が小さく,均一で平滑な 塗布が可能で,乾燥後の膜厚は 18µm (マスク膜厚約 22 µm) であった.しかしながら,その後のレーザ照射で 下板までの溶込みは観察されているものの,2 枚の板材 の溶接には至らなかった.SEM 観察では MgO 粒子が観 察され,レーザ照射による MgO の分解は困難といえる. したがって,基板の融点に対し焼結温度の高いインサー ト材は使用に適さないことが明らかとなり,AZ31B 薄板 材のインサート材として, φ5 nm またはφ100 nm の Ag ナノ粒子ペーストを選択する.

3.2 金属ナノペースト塗布条件の最適化

 $\phi 5 nm または \phi 100 nm の Ag ナノ粒子ペーストの塗布$ $条件について検討した.<math>\phi 5 nm$ のナノ粒子ペーストのス ピンコート膜を評価した結果,回転数 1000 rpm×30sの 条件において,膜厚約 $3 \mu m$ で塗布面の最大粗さ (Rz) $0.9 \mu m$ (母材表面の粗さ Rz=4.7 μ m)と,比較的均一か つ厚膜の塗布条件が得られた. 一方, φ100 nm の Ag ナ ノ粒子ペーストの場合は,マスク印刷法で塗布し,乾燥 後の膜厚は約 27μm(マスク膜厚約 22μm)であった. この値は板間のギャップ 35μm以下に収まっている.

3.3 Ag ナノ粒子ペーストを用いた Mg 合金薄板材の溶 接パラメータの確立

まずパルス幅を 2.5~4.0 ms まで変化させて溶接断面 を観察したところ,パルス幅 2.5 ms ではアンダーカット が見られ,パルス幅 4.0 ms では比較的大きなボイドが形 成された.これはパルス幅を延ばすことで材料の加熱時 間が増加,冷却時間が短縮され,ボイド形成に至ったと 推測される¹¹⁾.よって以降はパルス幅を 3.0 ms とする.

図3に、 $\phi 5 \text{ nm} O \text{Ag} + 2 粒子ペーストをインサート$ 材として用いた場合の、溶接後の断面の様子を示す.これらの図からは確認できるクラックはない.また図5に $<math>\phi 5 \text{ nm}$ または $\phi 100 \text{ nm} O \text{Ag} + 2 粒子ペーストを用いた$ 場合の、走査速度に対する溶接幅、溶込み深さ、自由表面までの距離を示す.

また図 3 から, $3.3 \sim 5.8 \text{ mm/s}$ (200~350 mm/min) に おいて溶接部表面にアンダーカット, 12.5~15 mm/s (700 ~900 mm/min) ではボイドが形成され,最適な速度条件 としては 6.7~10.8 mm/s (400~650 mm/min) と分かる. これらの条件では,下板への溶込み深さが板厚の 50 %を 超え,自由表面までの距離も約 200 μ m となった.また, ほとんどの条件で直径 10~20 μ m (板厚の 3~7%) のボ イドが形成された.インサート材を用いない場合と比較 しては小さいが,目標の板厚の 1%以内には収まらなか った.

一方、 ϕ 100 nm の Ag ナノ粒子ペーストの場合,溶接 幅は ϕ 5 nm のペーストとほぼ同様の傾向であるが,走査 速度が 3.3~10 mm/s (200~650 mm/min) のときに、下 板の底面までの溶融貫通が観察されている.走査速度 15 mm/s (900 mm/min) の場合でも、溶接幅約 500 μ m、溶 込み深さ約 200 μ mが得られている.図4に示すように、 溶接幅は ϕ 100 nm の Ag ナノ粒子ペーストの場合が大き いが、自由表面までの距離は ϕ 5 nm の Ag ナノ粒子ペー ストのほうが優れている.この原因は、HAZ の拡大に伴 うボイドなどの溶接欠陥の発生と考えられる。

このように、 φ 5 nm または φ 100 nm の Ag ナノ粒子ペ ーストを使用することで、溶接時の速度幅が大幅に改善

図3 溶接後のサンプル断面の様子(インサート材: φ5 nm の Ag ナノ粒子ペースト)

された. この理由の一つに, 熱伝導, 熱伝達特性の改 善が考えられる. 例えばAgの熱伝導率は429 W/m·Kで, Mg(156 W/m·K)の2.8 倍, 母材である AZ31B(76 W/m·K) の約5.6 倍¹²⁾である. これによって, 銀ナノ粒子ペース トが存在することで, 板材間の熱伝達特性が向上し, 接 合可能な走査速度範囲が大幅に改善されたと推測される.

次に腐食後の溶接部断面の SEM 観察により微細組織 を評価した.図5に、 ϕ 5 nm のAg ナノ粒子ペーストを インサート材として用い、走査速度 9.2 mm/s (550 mm/min) で溶接した後の断面 SEM 像を示す.断面は大 きく3つの領域に分類され、領域Aでは平均結晶粒径5 μ mの微細組織が観察されている.領域Bの平均粒径121 μ mと比較的大きく、領域Cは平均粒径16 μ mとなる.

従来のインサート材を用いない場合,結晶粒径の違い で領域 I (4.0 μ m), II (18 μ m), II (141 μ m), IV (14 μ m) と分類され,領域 I はレーザ照射後の溶融と急冷 によって微細粒が形成される.領域 II はいわゆる熱影響 相 (HAZ) で,加熱による粒成長で柱状の組織となる. 領域 II は I と II の混合組織で,領域 IV は母材の組織であ る.インサート材を用いる場合と比較すると,領域 A は 領域 I の組織に近く,領域 B は領域 III,領域 C は母材で ある領域 IV に近い ^{3,11)}.

一方、 ϕ 100 nm の Ag ナノ粒子ペーストの場合は、走 査速度 9.2 mm/s (550 mm/min)の領域 A では微細組織は 観察されないが、走査速度 12.5 mm/s (750 mm/min)で は平均粒径 10 μ m であった.この速度条件で急冷現象が 起こると推測される.一方領域 B やC は HAZ であった.

図 6 に、 φ 5 nm の Ag ナノ粒子ペーストをインサート 材として用いた場合の,溶融部と HAZ 境界面の EPMA 像を示す. 走査速度は 9.2 mm/s (550 mm/min) であった. 図中の溶融部 (点 1) と HAZ (点 2) における Ag 検出量 は,それぞれ 0.389 wt%, 0.046 wt% であり, Ag の分布は, 溶融部と HAZ の境界で明瞭であった. これはレーザ照 射によって AZ31B の溶融と同時に焼結温度の低いφ5 nmのAgナノ粒子ペーストもその溶融池に溶け込み,溶融金属の流れに沿って移動,一様に分布した後に冷却されたためと推測される.

一方, φ100 nm の Ag ナノ粒子ペースト(走査速度 15.8 mm/s (950 mm/min))の場合は、Ag は溶融部内にランダムに分布した. φ100 nm の Ag ナノ粒子ペーストは焼結温度が高く、溶融池内に十分に拡散しないまま冷却されたものと推測される.

3.4 レーザ溶接 Mg 合金薄板材の強度試験

溶接技術としての実現性を得るため、溶接を行った Mg 合金薄板材の引張せん断試験を実施した. 図 7 に, インサート材未使用の場合と、 φ5 nm および φ100 nm の Ag ナノ粒子ペーストをインサート材として用いた場 合の破断荷重を示す. インサート材を用いない場合, ス テージの走査速度 7.5 mm/s (450 mm/min) のときに最大 破断荷重は 779 N が得られている. φ5 nm の Ag ナノ粒 子ペーストを用いると、最大破断荷重は 818 N(走査速 度 7.5 mm/s (450 mm/min) とやや増加したが、 φ 100 nm の Ag ナノ粒子ペーストの場合は全体的に小さく最大で 617 N(走査速度 9.2 mm/s (550 mm/min) であった.こ れはφ100 nm の Ag ナノ粒子ペーストを使用した場合, 接合可能な走査速度範囲は改善されるものの, 前節のよ うに、ボイド形成による自由表面までの距離の減少や HAZ の拡大で、結果的に破断荷重が得られなかったと推 測される.

また, 母材の引張強さの $1/\sqrt{3}$ をせん断応力として継手 効率を見積もったところ, インサート材未使用の場合は 約 84%で, ϕ 5 nm, ϕ 100 nm の Ag ナノ粒子ペーストを インサート材として用いた場合には, それぞれ, 約 92% (ϕ 5 nm, 走査速度 7.5~10.8 mm/s(450~650 mm/min)), 約 78% (ϕ 100 nm, 走査速度 9.2, 12.5 mm/s (550, 750 mm/min))と, ϕ 5 nm のペーストの場合に 8%の改善効 果が得られた.

(c)自由表面までの距離

図 4 走査速度を 200~900 mm/min に変化したとき の(a)溶接幅と(b)溶接深さ,(c)自由表面までの距離

3.5 レーザ溶接部位の Mg 合金薄板材の硬さ試験

図 8(a)にインサート材未使用(走査速度 7.5 mm/s (450 mm/min)と,図 8(b)に φ 5 nm の Ag ナノ粒子ペーストを インサート材に使用した場合(走査速度 9.2 mm/s (550 mm/min)の,溶接部位のマイクロビッカース硬さ試験結 果を示す.

インサート材を用いない場合,溶融部の硬さは 80 Hv 程度であり,深さ 150 μ m ~ 250 μ m 付近で硬度が少し低 下し (HAZ),最終的に母材の硬さの 60 Hv 程度¹³⁾でほ ぼ一定となる.一方, ϕ 5 nm の Ag ナノ粒子ペーストを インサート材として用いた場合は,溶融部の硬さは 100 Hv を越えている.これは,前述の結晶粒の微細化による ものと推測される.また HAZ は 50 μ m 程度と狭く,こ の結果では認識できない. ϕ 100 nm の Ag ナノ粒子ペ

図 5 レーザ溶接部の微細構造(インサート材: φ5 nm の Ag ナノ粒子ペースト,走査速度 9.2 mm/s (550 mm/min))

図7 破断荷重の走査速度の影響

ーストを用いた場合には,溶融部の硬さが 80~150 Hv とばらつく結果となっている.これは,Agナノ粒子が溶 融部に不均一に分布しているためと推測される.

図 8 レーザ溶接部の硬さ試験結果: (a)インサート材未 使用(走査速度 7.5 mm/s (450 mm/min), (b) φ 5 nm の Ag ナノ粒子ペースト(走査速度 9.2 mm/s (550 mm/min)

3.6 溶接メカニズムの解明

これまで得られた結果からφ5 nm の金属ナノ粒子ペ ーストを用いた場合の溶接メカニズムを推測する.重ね 合わせた AZ31B 薄板材へのレーザ照射により,まず上板 が溶融される.形成された溶融池が下板に達し,熱伝導, 熱伝達過程を経て下板と溶接される.このとき低焼結温 度の Ag ナノ粒子ペーストをインサート材に用いること で,下板との熱伝達特性が大幅に改善され,接合可能な 速度領域が拡大する.

走査速度の高速化に伴い溶融部が急冷され,溶融部全体に拡散した Ag ナノ粒子ペーストを起点に結晶組織の 微細化が進行する.熱影響層 HAZ の狭量化により,結 果的にボイドやクラックが減少する.

4. 結論

Agナノ粒子ペーストをインサート材に用いた Mg合金 AZ31B 薄板材(板厚 0.3 mm)の、レーザ重ね隅肉溶接 を行い、溶接パラメータ、組織観察、硬さ、溶接継手効 率などを評価した.その結果を以下にまとめる.

- 1)Nd:YAG レーザによる Ag ナノ粒子ペーストをインサ ート材とする AZ31B 薄板材の重ね隅肉溶接に成功
- φ 5 nm の Ag ナノ粒子ペーストを用いた時の最適な レーザパラメータは、波長 1.06 μm, パルス幅 3.0 ms, 繰り返し周波数 80 Hz, パルスエネルギー1.8 J であり, 接合可能な走査速度範囲が大幅に改善
- 3) 最適なパラメータでは、微細な結晶粒組織の領域が 増加し、熱影響層 HAZ は 50 µ m 程度.結果的にボイ ドやクラックが減少
- φ5 nm の Ag ナノ粒子ペーストを用いたとき、Ag は溶融部にのみ存在
- 5) φ5 nm の Ag ナノ粒子ペーストを用いた場合の継手 効率は母材のせん断応力の 92%にまで向上. φ100 nm のペーストの場合は、ボイドなどの溶接欠陥の発 生で自由表面までの距離が減少し、継手効率の改善 には至らなかった

今後は、ナノ粒子ペースト塗布方法の改善やT字継手 への展開など、実用化に向けた研究課題が考えられる.

謝辞

この研究は、天田金属加工機械技術振興財団の一般研 究開発助成の支援の下で実施された.また評価サンプル 作製や評価に関して多くの助言をいただいた、茨城大学 工学部教授 伊藤吾朗氏ならびに機械工学科講師 山崎和 彦氏、本研究に従事した Mahazdir Ishak 博士、柴崎有宏 氏、木村学氏ならびに平林和輝氏に感謝する.

参考文献

- 社団法人日本塑性加工学会:マグネシウム加工技術, (2004), 17-18, コロナ社
- 日本マグネシウム協会:現場で生かす金属材料シリ ーズ マグネシウム,(2000), 62-121,カロス出版
- Mahadzir ISHAK et al: Lap Fillet Welding of Thin Sheet AZ31 Magnesium Alloy with Pulsed Nd:YAG Laser, J. Solid Mechanics and Materials Engineering, Vol. 3, No. 9 (2009) pp. 1045-1056.
- 4) 例えば, L. M. Liu et al: Effect of adhesive on molten pool structure and penetration in laser weld bonding of magnesium alloy, Optics and Lasers in Engineering, Volume 48, Issue 9, (2010) pp. 882-887.
- 5) 例えば, Gang Song et al: Investigations on Laser-TIG Hybrid Welding of Magnesium Alloys, Journal of Materials Science Forum, 488-489, (2005) pp. 371-376.
- (渡辺健彦ら:マグネシウム合金 AZ31B 板と 1050 ア ルミニウム板の Ag インサートを用いた抵抗スポッ ト溶接,軽金属,54(7),(2004) 293-297.
- 7) ハ リ マ 化 成 株 式 会 社 http://www.harima.co.jp/index.php
- Øえば、菅沼克昭ら:金属ナノ粒子ペーストのイン クジェット微細配線、シーエムシー出版(2006) 3-27
- 9) 前川克廣ら:プリンテッドエレクトロニクス用レー ザ焼結技術:銀ナノ粒子ペーストを用いた微細配線 及び機能性膜形成,エレクトロニクス実装学会誌, Vol. 15, No. 1 (2012) pp. 96-105.
- G.V. Raynor: The physical metallurgy of magnesium and its alloys, Pergamon Press, London, 1959
- Mahadzir ISHAK et al: Lap Fillet Laser Welding of AZ31B Thin Sheet Magnesium Alloy using Silver Nanoparticles, J. Solid Mechanics and Materials Engineering, Vol. 4, No. 1 (2010) pp. 51-62.
- 12) 日本熱物性学会編:新編熱物性ハンドブック,(2008) 23-24,368, 養賢堂
- 13) 例えば, L.M. Liu et al: The relationship between microstructure and properties of Mg/Al joints using Zn filer metal, Material Characterization, 59 (2008) 479-483.