高強度カーボンナノファイバー(CNF)強化 銅複合材料の開発

早稲田大学理工学術院総合研究所 各務記念材料技術研究所 教授 増田千利 (平成 21 年度一般研究開発助成 AF-2009027)

キーワード:カーボンナノファイバー(CNF)、銅、金属基複合材料

1. 研究の目的と背景

銅合金は導電性が良好なために、各種電気材料 としてこれまでに広く利用されている材料である。 特に高強度・高導電性材料の開発が期待されてい る。これまでには延性を有する第2相組織を含み、 加工により第2相の形状を繊維状にすることによ り強度を得ようとする材料が開発されてきた。

例としては第2相として Ag を Cu 中に分散させ た Cu-Ag 合金を鋳造法で製造し、鍛造、冷間加工 を加えることにより第2相のAgを繊維状にしかも 微細に分散、配向させた材料が開発され、強度 600MPa、 導電率が IASC で 95% と高いことが報告さ れている。しかし Ag が高価なことから、第2相と して Cr, Fe, Ni などが検討されてきた。我々も Cu-Cr 合金を溶解法によりインゴットを作成し、鍛造後 冷間溝ロール加工法と線引き法により、線径1mm まで細くしたものを用いて強度特性を調べた結果、 Cu-Ag 合金より 900MPa と高強度で、しかも IASC85%という高導電性材料が得られることを明 らかにした。また疲労特性も優れていることも確 認した。しかし Cr を含むために高温での溶解が避 けられず、耐火物からの不純物の混入が生じるた めに、より高純度の合金の製造が困難であると判 明した。そこで新しい安価な強化材が必要である と考えられた。

高強度、高導電率などの特性を有する強化材と して注目されているのが、カーボンナノチューブ (CNT)と呼ばれている繊維である。この繊維は非 常に細かく、凝集しているのが特徴で、そのため に金属中に分散させることが非常に困難になる。 また繊維の長手方向には強度、導電率などの特性 は優れているものの、断面方向には逆に非常に低 いとされていて、異方性を有しているために、高 強度、高導電率を得るためには、繊維の方向を制 御しなければならないことになる。

2. 実験方法

実験の全体計画を図1に示す。材料は粉末冶金法 で準備し、混合の後ホットプレス(HT)やスパー ク・プラズマ焼結装置 (SPS) を用いて焼結した。 その後、熱間溝ロール装置および冷間溝ロール装 置、線引き装置を用いて線材を作成した。以下そ れぞれ簡単に内容を説明する。

図1 実験フローチャート

2.1 CNF と Cu との混合

強化材であるカーボンナノファイバー(CNF)とマトリックス材料である Cu を粉末冶金法により混合した。混合する前の使用した CNF の写真を図2に示す。

図2 CNFのSEM 像

CNF は氣相成長カーボン繊維(VGCF)で昭和電工(株) 社製を用いた。**CNF** は平均直径が150nm 程度で、長さは平均10~20 µ m とされている。**CNF** の特徴を表1にまとめて示す。

写真から分かるように CNF はお互いに絡みあっ ており、以下においてこの絡みをほぐすことが非 常に困難である。一般的には機械的な混合により ばらばらにほぐすことを試みている例が多い。こ れはファンデルワールス力により凝集しているた めと言われている。一方、Cu 粉末の平均直径は 45 μ m である。このほか 5, 10 μ mの粉末も用いた (Cu 粉末のサイズを変えた実験はこの計画にはないプ ラズマ溶射の実験に用いた)。CNF の含有率は Cu 粉末と重量比で 0, 0. 5, 5. 0, 10, 20, 30%の 7 種類と した。

Ar 雰囲気のグローボックス内で、CNF、Cu 粉末 と直径 10mm の鋼球をステンレス製のポットに入 れ蓋をし、メカニカルアロイイング(MA)装置に 取り付け混合した。混合する回転数は 150rpm とし、 混合時間は 3 時間とした。また鋼球と粉末との重 量比は 20:1 とした。

2.2 複合材料の焼結

ホットプレス(HT)装置に中空黒鉛ダイスをセットし、上下の黒鉛パンチ間に混合した粉末を挿入し、 真空中において900℃で1時間の焼結を行った。ダイスの直径は40mmである。また一部はスパーク・プラ ズマ焼結装置(SPS)を使った。

SPS の特徴はホットプレスと比べて、短時間で昇温 できること、また粒子間でスパークが発生し、短時間 で緻密な焼結ができるといわれている。この場合、黒 鉛ダイスは内径 10mm を使い、860℃、1 時間の焼結 を真空中で行った。

2.3 溝口一ル加工

三角形の溝を有する上下のロールの間に材料を挿 入して加工を行う。材料を加熱あるいは室温、低温に 保持して、加工が可能である。まず40mmの焼結体を 外形44mmのアルミ缶に挿入して、両端を折り曲げて、 800℃に30分、Ar 雰囲気中で加熱後、断面積を約7% 減少させながら、同じサイズの溝に2回通した後、さ らに同じ圧下の加工を続け、最終断面7.5x7.5mmサ イズになるまで行った。途中11.6x11.6mmサイズで一 度加工を中断して、試料を一部切り出した。

その後、銅パイプに詰め替えて冷間で溝ロール加工

を行い、3x3mmにした。続いて線引き加工を行った。 この他銅パイプに CNF を充填し、室温で溝ロール加 工、線引きを行い、最終経 0.3mmの線材を作成した。

2.4 機械的特性評価他

溝ロール加工、線引き加工後、引張り試験、熱伝導 特性などを測定した。引張り試験は、線引き加工した 後、シース缶付きのままで引張り速度 1mm/min で行 った。熱伝導は 10x10mm サイズでミクロレーザーフ ラッシュ装置を用いた。また比熱は示差熱量分析計 (DSC)を用いた。

粉末の形状、混合後の CNF の分散状態、焼結材の断 面組織、引張り破面観察などには走査電子顕微鏡 (SEM)を用いた。また内部組織観察には透過電子顕 微鏡(TEM)を用いた。

TEM観察用の試料は線引きのときの直径が3mm程 度のものを1mmの厚さに切断して、湿式研磨により、 100μmの厚さにした後、ダイヤモンド研磨剤を用い てディンプラーにより、片面中央にくぼみを作成し、 イオンシーニング装置 (PIPS) により、試料中央部に 穴を作成したものを使用した。

TEM では穴の周囲で薄い部分を観察する。今回は PIPS ですべての試料について観察できる状態まで準 備したが、観察するまでにはいたらなかった。現在、 真空デシケータ中に保存しているので、観察は可能で ある。

3. 結果

3.1 混合粉末の観察

図3に5wt%CNFとCuの混合した後の粉末のSEM 像を示す。赤丸で囲った部分がCu粉末である。45µ mの粉末が小さくなっている様子が分かるが、一部ま だもとのサイズの粉末も見られる。白い針状の特徴が CNFである。これからCNFはかなり分散している様 子が分かる。CNFの量が少ないので、Cu粒子内に埋 め込まれているものと考えられる。詳細に見るとまだ CNFの塊状に凝集したままの部分も観察された。凝 集を減少させるために溶剤を入れて混合することも ある。またプラズマ溶射にはできるだけサイズが均一 になっていることが求められるためにCu粉末のサイ ズを変えて混合をしている。その結果、5,10µmの Cu粉末の場合、150rpmの条件下では元のサイズより 大きく増粒していた。

表 1. CNF(VGCF)の特性

ф њ	◆11:0日/マ	经出分开 巨	アスペクト比	引張強さ (GPa)	ヤング率 GPa	熱伝導率	
密度	絨維住					W/m·K	
g/cm3	nm	μm				軸方向	半径方向
2.0	150	$10 \sim 20$	$10{\sim}500$	100	600	2000	10

3.2 焼結材および溝ロール加工材のマクロ観察

図4,5,6,7に焼結材、溝ロール加工材、線引き 材のマクロ写真を示す。図4は焼結材をシース缶に詰 めたもので、直径が40mm、厚さ約30mmである。こ れを熱間溝ロール加工した。

図3 5wt%CNF-Cu 混合粉末の SEM 像

図4 CNF-Cu 複合材料の焼結材

図5 熱間溝ロール加工材(11.6x11.6mm)

図5は溝ロール加工して、11.6x11.6mmにしたもので、 含有率が増加するに伴い、長さが短くなっているが、 CNFの量が多くなるに従い、加工伸びが減少してい ることになる。図6は断面形状を撮影したもので、形 状としては、ほぼ正方形をしているといえる。同一形 状の溝に90度回転して2回通しているが、変形がほ ぼ一定に近いと考えられる。図7は線引き後の形状の マクロ観察像である。0,0.5,1.0,5wt%の場合、破断す

図 6 溝ロール加工材断面図 (左から 0%, 0.5%, 1%, 5%, 10%, 20%, 30%)

図7 線引き材

ることなく線引きされている。10,20wt%の場合には 線引きができたが、途中 500℃で1時間の焼鈍の熱処 理を施しながら、加工を続けた。30wt%の場合には、 さらに焼鈍を繰り返したが割れて線引きはできなか った。

3.3 機械的特性

3.3.1 複合材の硬さ

図8に溝ロール加工材の硬さ試験結果を示す。測定 は加工材の長手方向と断面方向の2方向について行 った。その結果、全体として、CNFの含有率が増す にしたがって、硬さが約HV80から約HV110程度ま でわずかながら増加しているが、20wt%では約HV70 と0wt%のCu材より減少している。これはCNFの 含有率が多く焼結が不十分であるためと考えられる。 また断面方向による硬さの差はあまり大きくないと いえる。

図8 溝ロール材のビッカース硬さ比較

3.3.2 **複合材の**引張り特性

図 9 に引張り試験結果を示す。350~420MPa 程度 までばらついているが、CNF が低いほうが引張り強 度が高くなっている。

図9 引張り試験結果

図 10 引張り破面、a) 0.5%CNF、b) 5%CNF

破面を観察した結果、図 10 に示すように、0, 0.5wt%CNF ではきれいなディンプルが観察されるが、 1,5wt%では破面に微細な割れが観察された。加工の 途中で割れが形成されたために引張り強度が増加し なかったと考えられる。室温における溝ロール加工に 問題があると考えられる。このために現在熱間押出し 治具を作成して、予備実験を行っている。CNF を含 むアルミ基複合材料を作成した結果、押出し方向に平 行にそろった CNF が約 65%揃った試料が得られるま でになった。このために Cu-CNF 複合材料についても 検討を行い、原因を調べる予定である。なおこれまで に SPS 法により 30MPa で焼結した板材の引張り強度 は 220 MPa (0%CNF)と 270MPa (5%CNF) と増加し ている。

3.4 複合材の熱伝導特性

図 11 に熱伝導特性を調べた結果を示す。純銅の熱伝 導は400W/mK である。結果から 400~100W/mK と CNF の含有量の増加とともに減少している。SPS 焼結材に比べて、溝ロール加工材のほうが少し高くな っているが、CNF の方向が長手方向に揃っているた めと考えられる。SPS 焼結では CNF の方向が 3D あ るいは 2D ランダムであるために低くなったと考え られる。

図11 溝ロール加工材の熱伝導率比較

表1から CNF の軸方向には熱伝導は約 2000W/mK と非常に高いが、半径方向に対しては 10W/mK と極端に低く異方性がある。このためにできるだけ方向を そろえる必要がある。なお CNF を 5%含有の複合材料を SPS で焼結した後、冷間において溝ロール加工 と焼鈍を繰り返して直径 1mm の線材を作成し、さら に Cu パイプに線材を入れて、SPS 焼結した後、熱伝 導を測定したところ、200W/mK まで改善したが、Cu の熱伝導値を上回ることはなかった。

4. 結論

カーボンナノファイバー(CNF)強化 Cu 複合材料 を粉末法で混合し焼結後、CNF 繊維の方向を揃える ために、熱間および冷間において溝ロール加工および 冷間の線引き加工により作成した。

その結果、硬さは CNF の含有量の増加とともに増加 したが、増加量はあまり大きくはなかった。引張り強 度は CNF の含有量が 0 から 1.0%まではほとんど変化 せず約 400MPa であったが、CNF が増えると減少し た。破面観察の結果、内部に割れが観察された(図 12) ことから、溝ロール加工の段階で、特に冷間加工 の段階で内部に割れが生じた可能性が考えられる。ま た熱伝導特性も CNF の増加とともに減少し、改善は 見られなかった。これも試料内部に割れが存在するた めと考えられる。今回の結果は不成功に終わったので、Cu-CNF 混合粉末を用いたプラズマ溶射の検討を行 熱間押出し加工治具を作成して、予備実験を行った。 Cu-CNF 複合材料と混合粉末を缶に真空封入し、その まま押出加工を行う予定である。CNFを1%含有する 純アルミ押出し材の引張り強度が 380MPa と Cu-CNF 複合材とほぼ同じ結果が得られている。さらに断面観 察の結果、CNF 繊維の押出し方向へ平行に約 65% 揃 っていることから、Cu-CNF 複合材料についても改善 が期待される。

なお、銅パイプに CNF を詰めて、溝ロール加工、 線引きを行い 0.3mm 径(CNF の含有率は約 V=2.5%) の線材(図 12)を引張った結果、引張り強度が 560MPa とかなり高い結果を得ているために、CNF 繊維の向 きを揃えることで、高強度化が可能と考えている。複 合則で繊維の強度を推定したところ、1本の繊維とみ なすと、カーボン繊維の強度をはるかに超えることが わかる。

Vf=2.5%の線引き材 図12

また CNF の分散が問題と考え、Cu 粉末上に CNT (カ ーボンナノチューブ)を成長させる実験を試みたが、 直径が 5μ程度の繊維が成長することができた。TEM で観察したところ、アモルファスの可能性が高かった ので、Cu 粉末表面に別の金属を薄く PVD コーティン グして、実験したところ、図13に示すように直径が 約 10nm の多層(写真の部分では 5 層に見える)の CNT が成長していたが、約 50%ほど 5µmのアモル ファス繊維も見られた。これはコーティングが粉末全 面にできないためで、コーティングがされていない部 分では Cu 部のままで、CNT が成長していないものと 考えた。現在、Cu と金属粉末をメカニカルアロイイ ング(MA)法で合金化させて、CNTの成長を検討し ている。 複合材料の熱伝導特性の評価では繊維とマ トリックスとの界面における熱抵抗が問題になる。強

化繊維のサイズが小さくなると、界面の占める割合は 増加するために、熱伝導が減少する可能性がある。強 度特性も界面強度画像化すれば改善できる可能性が 高いと考え、CNFの表面に Cu をあらかじめ緻密にコ ーティングできれば、熱抵抗を下げ、界面強度を向上 させることができるものと考えて試みている。また い、溶射条件を決めた。

図13 Cu 粉末上に成長した CNT の TEM 像 (Cu表面に金属をコーティング)

謝辞

本研究を遂行するに当たり公益財団法人天田財団 から研究費を援助いただきまして、ここに謝意を表し ます。また溝ロール加工を快く引き受けていただきま した(独)物質・材料研究機構の黒田秀治氏に、また 同研究所の西村聡之博士には熱伝導測定装置をお借 りしました。ここに感謝の意を表します。

文献

全体として、次世代構造材料の最新技術ー社会・産業 へのインパクトー」、新谷紀雄著、CMC 出版(200 8)p42-56。他は省略

発表

1) 小川、平川、増田、材料 61 巻 (2012) p454-461. 2) 山本、日高、川奈、増田、表面技術、63 巻、(20129) p35-40.