超小型空冷半導体レーザの開発と微細金型熱処理への応用

石川県工業試験場 機械金属部

専門研究員 舟田義則

(平成20年度一般研究開発助成AF-2008216)

キーワード: 空冷化, 高出力半導体レーザ, レーザ熱処理

1. 研究の目的と背景

レーザ加工は, 光エネルギーを高密度に集 中して加工物表面に照射することで材料の局 部的な加熱・溶融・蒸発を生じさせ、これを 利用して表面熱処理や溶接、穴加工や切断を 可能とする。ガス溶断やアーク溶接、高周波 加熱など従来の熱加工方法に比べ、熱影響や 歪みが少ないことや生産性が高いことを特徴 としている。また,機械加工に比べて,より 微細な穴加工や切断が可能であるなど従来の 加工方法に比べて優れた点が多い 1)。例えば, 表面熱処理にレーザ加熱を用いると,従来の 高周波加熱では困難な局所かつ極表面の加熱 が可能となり、高精度な表面熱処理が期待で きる。したがって、これからのものづくり技 術には欠くことのできない重要な加工方法と して認識されている。

しかしながら,様々な加工分野での利用が 可能であるにも関わらず、溶接や表面熱処理 などへの適用があまり進んでいないのが現状 である。その理由として、レーザ加工装置の 価格やランニングコストが高いこと、煩雑な 定期保守が必要であることが挙げられる。こ れらを解決するため,これまで安価で電力変 換効率が高い高出力半導体レーザに着目し, 精密溶接等への応用が可能であることを示し てきた^{2),3)}。しかし、現状の高出力半導体レ ーザでは、10000時間を超える長寿命な半導体 レーザ素子を使用しているにも関わらず,寿 命に至る前に故障することが頻発している。 その原因の多くは、装置の温度上昇を防ぐた めに使用されている微細な冷却水管中での水 詰まりに伴うオーバーヒートであり、その根 本的な解決が望まれている⁴⁾。

そこで本研究では、水冷装置を使用しない 空冷式の半導体レーザ装置開発を目的に、電 子冷却機器と強制空冷式放熱器を組み込んだ 最大出力 100W の半導体レーザ装置を試作した。 さらに、その実用性を検証するため、微細金 型用小径鋼材ピンに対するレーザ加熱表面熱 処理実験を行った。以下にその内容を示す。

2. 空冷式小型半導体レーザ装置の試作 2・1 レーザ装置の本体構造

試作したレーザ装置の概観を図1に示す。 同装置は、レーザ光発振部と集光光学部、冷 却部から構成されている。レーザ光発振部に は発振波長が 808nm で最大出力 50W の半導体 レーザ素子を2個組み込み、合計で 100W のレ ーザ光を照射可能とした。

採用したレーザ素子の電力-光変換効率は約 50%であるため,最大出力時にはこれと同等の 100Wの熱量が発生する。これによる装置内の

図1 空冷高出力半導体レーザ装置

(a) 出力特性

(b) スポットパターン図3 空冷式半導体レーザ性能評価

温度上昇を防ぐため、図2に示す空冷式冷却 構造を作製した。これは、素子で発生する熱 をペルチェ素子によって強制的に銅材プレー トに移動させ、自励振動式ヒートパイプ「ヒ ートレーン」から成る放熱器によって大気中 に強制排出する仕組みになっている。さらに、 レーザ素子近傍に温度センサを取り付け、温 調器を介してペルチェ素子駆動電源を制御す ることによって、レーザ光照射時も常に素子 温度が一定であるよう設計・製作した。

2・2 レーザ装置の性能評価

図3(a)は、試作した空冷式小型半導体レー ザにおける出力特性をコヒーレント社製パワ ーメータ「Field Mate」とパワーセンサ 「PM150C」を用いて測定した結果である。入 力電流 10A 以上でレーザ光が出力される。そ して、電流量が増加するに従い、照射される レーザ光の出力は直線的に増加する。出力の 繰り返し性が高いことから、装置への投入電 流を緻密に制御すれば、レーザ光の出力を精 密に設定できることがわかる。なお、本装置 では、投入電流 52A にて最大出力 96W が得ら れ、この場合の電力-光変換効率は 51.3%に達 した。図3(b)は、試作した装置におけるレー ザ光の焦点位置でのスポットパターンを観察 した結果であり、細長い楕円であることがわ

かる。プリメス社製ビームプロファイラ 「Focus Monitor」により,スポットパターン の寸法を測定した結果,装置端から 50mm の焦 点位置において長径が 2mm,短径が 0.2mm(最 大強度の 1/e²で定義)であった。

試作した装置における放熱性能を評価する ため、30秒間レーザ光を連続照射した時のレ ーザ素子近傍の温度変化を測定した。図4に その結果を示す。なお、測定時の室温は24℃ であった。投入電流40Aでは、レーザ光は67W で安定に出力され、レーザ素子の温度は,20 ℃±1℃の範囲で制御できていることがわかる。 一方、投入電流50Aでは87Wのレーザ光が出 力され、その間、レーザ素子の温度は0.13℃/ 秒で上昇し、24℃に達した。試作した冷却ユ ニットによる放熱性能が限界に近い状態にあ ると考えられる。しかし、出力変動は±1%以 内であり、実用上問題ない。

以上のことから、本研究開発で試作した装置は、最大出力が 96W であり、また、出力 87 Wで 30 秒間連続照射しても安定して動作可能 であることがわかった。

3. 鋼材の高精度レーザ表面熱処理

3・1 小径鋼材ピンのレーザ加熱

図 5 (a)に示すように, 試作した空冷式小型 半導体レーザを2 台斜めに配置したレーザ加 熱実験機を用い, 小径鋼材ピンについて表面 加熱実験を行った。実験に使用した試料は, 全長が 40mm で直径が 1.5mm, 材質が SKH51 の 小径鋼材ピンである。これを回転させながら 流量 0.17L/s のアルゴンガスを吹き付け続け た状態で先端から 10mm の位置にレーザ光を照 射した。

図 5 (b)は、回転速度 2rps, 合計出力 100W の条件で二方向から同時にレーザ光を照射し

(a) 装置外観

(b) 加熱中の様子図5 ダブルヘッド型レーザ加熱装置

ている時の様子である。レーザ光照射部が局 所的に赤熱し,加熱されていることがわかる。

3・2 レーザ加熱後の表面硬さ

回転速度 2rps の定速条件の下,出力や照射時間を変えてレーザ加熱した鋼材ピンの表面硬さをアカシ製マイクロビッカース硬さ試験機「MVK-H2」を用いて測定した。その結果を図6に示す。照射時間1秒の場合,出力80W以上で表面硬さが大きく増加し,出力100WでHV850に達した。そして,出力120Wで表面に僅かな溶融が見られるものの最高硬さHV900を得た。それ以上出力を高くすると徐々に表面硬さが減少し,出力180WでHV800になった。

図7 表面硬さに及ぼすレーザ加熱条件の影響

図8 レーザ加熱した小径鋼材ピン断面

これは、必要以上に出力を上げるとレーザ光 照射部周辺の温度が全体的に上昇し、表面硬 化に必要な適度な冷却速度が得られなくなる ためと考えられる。一方、照射時間 4 秒の場 合、より低い出力で表面硬さが増加するが、 その値は HV700 に留まった。

その他の条件でレーザ加熱した鋼材ピンの 表面硬さの測定結果を図7に示す。照射時間 が短く、出力が高い条件でレーザ加熱する程、 鋼材ピンの表面硬度は上昇した。これは、短 時間かつ高出力のレーザ加熱によって、レー ザ光照射部周辺の温度を上げることなく照射 部のみの表面温度を上昇させることができ、 表面硬化に十分な冷却速度が得られるためと 考えられる。

3・3 レーザ加熱部の硬化深さ

レーザ加熱した鋼材ピンの軸に平行な断面 を組織観察した。その結果を図8に示す。こ れは、出力100Wのレーザ光を1秒間照射して 加熱した断面である。表面から中心に向かっ て組織変化が見られ、レーザ加熱の際の急加 熱急冷により表面焼き入れが行われていると 判断できる。その範囲はレーザ光照射位置近 傍に限られており、レーザ加熱に伴う硬化範 囲が局所的であることがわかる。

図9は、組織変化が見られる部分について 半径方向に硬さ分布を測定し、加熱時間が1 秒で出力が100Wと120Wとを比較した結果で ある。出力120Wの場合、硬さがHV800以上を 示す深さが0.14mmであり、出力100Wの場合 よりも深くまで硬化できることがわかる。し かしながら、いずれの場合も中心付近の硬さ は、加熱前の母材硬さHV250に比べて、HV500 以上に硬化している。中心付近の母材硬さに 影響を与える事なく表面のみを硬化させるに は、より高い出力のレーザ光をより短い時間 で照射して極表面のみを加熱することが必要 と考えられる。

3・4 レーザ加熱による熱変形

鋼材ピンについてレーザ加熱による変形の 有無を調べるため、レーザ加熱後の鋼材ピン の輪郭形状を(株)ニコン製非接触三次元測定 機「NEXIV-VMH300N」により測定した。回転速 度 2rps で一定の下,出力 100W または出力 120W のレーザ光で加熱した場合の結果を図 10 に示す。いずれの場合もレーザ光照射位置で 曲げの変形が発生し、出力 100W の場合で 5µm, 出力 120W の場合で 7µm の変形が生じている。

この原因としては,回転させながらレーザ 光を照射する際の始点・終点の存在によって 周方向に熱応力の不均衡を生じたことが考え られる。こうした熱変形を防ぐには,レーザ 光照射の始点・終点によって熱応力の不均衡 を周方向に発生させないよう複数のレーザ光 照射点を設けるか,または回転速度を大幅に 上昇してレーザ加熱する手法が考えられる。

4. 結 言

本研究では、空冷式小型半導体レーザ装置 の試作と、これを 2 台斜めに配置した装置に て、レーザ加熱による小径鋼材ピンの表面熱 処理への応用を検討した。得られた結果を以 下に総括して述べる。

- (1)ペルチェ素子およびヒートレーン放熱器を 組み込んだ空冷式小型半導体レーザ装置を 試作した。最大出力 100W で 30 秒間連続し てレーザ光を照射することが可能であった。
- (2)試作した半導体レーザ装置を斜めに 2 台配 置した装置によって直径 1.5mm の SKH51 鋼 材ピンをレーザ加熱した結果,表面硬化が 可能であった。
- (3)鋼材ピンの表面硬さは、短時間かつ高出力 でレーザ加熱する程増加し、回転速度 2rps で最大 HV900 まで上昇させることができた。

謝 辞

本研究では,空冷式小型半導体レーザ装置 の試作開発において「レーザプロセッシング 助成事業」により研究助成頂いた財団法人天 田金属機械加工機械技術振興財団に深謝しま す。

参考文献

- レーザ学会編.レーザプロセッシング応用便覧. エヌジーティー, 2006, p. 145-269.
- 2) 舟田義則,廣崎憲一,中島明哉.半導体レーザ による超薄板溶接技術の開発.石川県工業試験 場研究報告.2006, no. 55, p. 9-14.
- 3) 舟田義則, 廣崎憲一, 中島明哉. 超薄板製品 の三次元溶接技術の開発. 石川県工業試験場研 究報告. 2008, no. 57, p. 1-4.
- Georg Treusch, Raman Srinivasan, Dennis Brown, Robert Miller, Jim Harrison. Reliability of water cooled high power diode laser modules. Proc. SPIE. 2005, vol. 5711, p. 132-141.